Multi-resolution feature extraction from Gabor filtered images

M. Rizki, L. Tamburino, M. Zmuda
{"title":"Multi-resolution feature extraction from Gabor filtered images","authors":"M. Rizki, L. Tamburino, M. Zmuda","doi":"10.1109/NAECON.1993.290837","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a hybrid learning system which combines a genetic algorithm with a neural network to classify grayscale images. The system operates on multi-resolution images which are formed by applying Gabor filters to a set of input images. The genetic algorithm evolves morphological probes that sample the multi-resolution images, and the perceptron algorithm then evaluates the extracted features. We demonstrate the use of this system by discriminating images of model tanks from other military vehicles. A multiplicity of accurate solutions, consisting of sparse morphological probes, are generated.<<ETX>>","PeriodicalId":183796,"journal":{"name":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1993 National Aerospace and Electronics Conference-NAECON 1993","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1993.290837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we describe a hybrid learning system which combines a genetic algorithm with a neural network to classify grayscale images. The system operates on multi-resolution images which are formed by applying Gabor filters to a set of input images. The genetic algorithm evolves morphological probes that sample the multi-resolution images, and the perceptron algorithm then evaluates the extracted features. We demonstrate the use of this system by discriminating images of model tanks from other military vehicles. A multiplicity of accurate solutions, consisting of sparse morphological probes, are generated.<>
Gabor滤波图像的多分辨率特征提取
本文描述了一种结合遗传算法和神经网络对灰度图像进行分类的混合学习系统。该系统对多分辨率图像进行操作,这些图像是通过对一组输入图像应用Gabor滤波器形成的。遗传算法进化形态探针,对多分辨率图像进行采样,然后感知器算法评估提取的特征。我们通过区分模型坦克和其他军用车辆的图像来演示该系统的使用。生成了由稀疏形态学探针组成的多个精确解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信