Implementasi Algoritma K-Means untuk Menganalisa Pemain Video Game Mobile Legend untuk Mengetahui Tipe Hero dan Role yang Sering Digunakan pada Setiap Kalangan

Laras Elza Devila, Saifur Rohman Cholil, Raffi Danendra Athallah, Ahmad Arrio Irawan
{"title":"Implementasi Algoritma K-Means untuk Menganalisa Pemain Video Game Mobile Legend untuk Mengetahui Tipe Hero dan Role yang Sering Digunakan pada Setiap Kalangan","authors":"Laras Elza Devila, Saifur Rohman Cholil, Raffi Danendra Athallah, Ahmad Arrio Irawan","doi":"10.30998/string.v6i3.11094","DOIUrl":null,"url":null,"abstract":"Video game adalah dimasyarakat. Bahkan Esports (kompetisi video game ) semakin diakui sebagai olahraga rekreasi. Contoh Esport yang sedang digemari dikalangan saat ini adalah Mobile Legend s. Pada smartphone Android dan IOS keduanya dapat menjalankan aplikasi video game Mobile Legend s. Namun, belum pernah ada yang membahas penggunaan Role - playing bawaan developer sebagai hero alternatif untuk menyederhanakan panduan kombinasi Role - playing dalam game , mengelompokkan karakter sesuai karakteristiknya, dan menggunakan karakter sesuai keinginan pemain. Untuk itu, penelitian ini menggunakan algoritma k-means untuk menyusun pengelompokan hero dan Role playing dalam video game Mobile Legend . Dari hasil penelitian yang dilakukan, terdapat tiga kelompok hero yang memiliki Abstract Video games are one of the technologies in the entertainment field that are growing rapidly in the community. Even Esports (video game competitions) are increasingly recognized by the industry as a recreational sport. An example of an esport that is currently popular among people is Mobile Legends. Both Android and IOS smartphones can run the Mobile Legends video game application. However, no one has ever discussed using the developer's built-in Role-playing as an alternative hero to simplify the Role-playing combination guide in the game, grouping characters according to their characteristics, and using characters according to the player's wishes. For this reason, this study uses the k-means algorithm to compile the grouping of heroes and Role-playing in the Mobile Legend video game. From the results of the research conducted, there are three groups of heroes that have similar characteristics, namely Mage, Marksman, and Fighter. The K-Means algorithm used can help determine the order of hero launches. Based on the results of clustering testing using the K-Means method, data in cluster 1 was obtained with an average accuracy of 5% hero support; heroes Tanks 10%; Fighter heroes 20%; hero Mage 25%; hero Assassin 20%; Marksman heroes 20%; then for the average age of 25.1 ; win rate 67.3; total matches 5863.4 and total MVP 1664,1. Players with hero support, tank, fighter and mage types have Roles as supporting tools to develop a core Role or Marksman and assassin heroes who have high capabilities as winners in the team, with an average user who has a supporting Role of 0.15 and an average user with 0.2 . Role core","PeriodicalId":177991,"journal":{"name":"STRING (Satuan Tulisan Riset dan Inovasi Teknologi)","volume":"1985 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STRING (Satuan Tulisan Riset dan Inovasi Teknologi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/string.v6i3.11094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video game adalah dimasyarakat. Bahkan Esports (kompetisi video game ) semakin diakui sebagai olahraga rekreasi. Contoh Esport yang sedang digemari dikalangan saat ini adalah Mobile Legend s. Pada smartphone Android dan IOS keduanya dapat menjalankan aplikasi video game Mobile Legend s. Namun, belum pernah ada yang membahas penggunaan Role - playing bawaan developer sebagai hero alternatif untuk menyederhanakan panduan kombinasi Role - playing dalam game , mengelompokkan karakter sesuai karakteristiknya, dan menggunakan karakter sesuai keinginan pemain. Untuk itu, penelitian ini menggunakan algoritma k-means untuk menyusun pengelompokan hero dan Role playing dalam video game Mobile Legend . Dari hasil penelitian yang dilakukan, terdapat tiga kelompok hero yang memiliki Abstract Video games are one of the technologies in the entertainment field that are growing rapidly in the community. Even Esports (video game competitions) are increasingly recognized by the industry as a recreational sport. An example of an esport that is currently popular among people is Mobile Legends. Both Android and IOS smartphones can run the Mobile Legends video game application. However, no one has ever discussed using the developer's built-in Role-playing as an alternative hero to simplify the Role-playing combination guide in the game, grouping characters according to their characteristics, and using characters according to the player's wishes. For this reason, this study uses the k-means algorithm to compile the grouping of heroes and Role-playing in the Mobile Legend video game. From the results of the research conducted, there are three groups of heroes that have similar characteristics, namely Mage, Marksman, and Fighter. The K-Means algorithm used can help determine the order of hero launches. Based on the results of clustering testing using the K-Means method, data in cluster 1 was obtained with an average accuracy of 5% hero support; heroes Tanks 10%; Fighter heroes 20%; hero Mage 25%; hero Assassin 20%; Marksman heroes 20%; then for the average age of 25.1 ; win rate 67.3; total matches 5863.4 and total MVP 1664,1. Players with hero support, tank, fighter and mage types have Roles as supporting tools to develop a core Role or Marksman and assassin heroes who have high capabilities as winners in the team, with an average user who has a supporting Role of 0.15 and an average user with 0.2 . Role core
k -手段算法分析移动电子游戏玩家传奇,了解类型英雄和角色,他们经常使用在所有圆
电子游戏已经过时了。甚至Esports也越来越被认为是一项休闲运动。Esport现在很流行的一个例子是传奇s。在移动智能手机Android和IOS都可以经营移动视频游戏应用传奇s。然而,从来没有人讨论替代使用角色——先天性播放开发商作为英雄来简化游戏中的角色——组合演奏指南,根据性格特征进行分组,并使用按照自己的角色球员。为此,这项研究使用k-手段算法来建立英雄分组和手机游戏传奇角色。从我们所做的研究中,有三组拥有Abstract视频游戏的英雄是社区中发展迅速的娱乐领域的技术之一。就连Esports(比赛)也被行业作为一项创新运动认出来。这是一种可移动民族的行为。Android和IOS智能手机都可以运行手机传奇视频游戏应用程序。However,从来没有人用开发人员的角色扮演来代替游戏中角色扮演的替代英雄,用角色扮演来代表角色角色,用角色角色来代表玩家的愿望来交换角色角色。因为这个原因,这个研究利用了k-手段来编译移动游戏传奇中的英雄角色。从研究指导的结果来看,有三群具有相似性格、namely Mage、Marksman和Fighter的英雄。使用的算法可以帮助决定英雄的命令发射。基于基于k - method测试的结果,集群1的数据是基于5%英雄支持的平均计算;英雄坦克10%;斗士英雄20%;英雄法师25%;英雄刺客20%;Marksman heroes 20%;然后达到25.1的平均年龄;赢赢67.3;总匹配5863.4和总MVP 1664.1。球员英雄的支持,坦克、战斗机和法师types有美国Roles supporting tools冲洗百万核心角色还是神枪手和刺客英雄》和《世卫组织拥有美国高中capabilities得主聚会的团队里,用平均用户超过世卫组织有一个supporting 0。15的角色和用户的平均用0。2。核心角色
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信