Energy-Optimization Scheduling of Task Dependent Graph on DVS-Enabled Cluster System

Yan Ma, Bin Gong, Lida Zou
{"title":"Energy-Optimization Scheduling of Task Dependent Graph on DVS-Enabled Cluster System","authors":"Yan Ma, Bin Gong, Lida Zou","doi":"10.1109/ChinaGrid.2010.16","DOIUrl":null,"url":null,"abstract":"At present, power management in High-Performance Computing (HPC) environment is becoming a hot topic owning to its high operation cost, low reliability and environmental impact. In this paper, we investigate energy minimization scheduling algorithm of data dependent tasks in DVS-Enabled cluster system. Considering the data-intensive characteristics, the proposed EOTD (Energy Optimization scheduling for Task Dependent graph) algorithm adopts task clustering to reduce data transmission time and communication energy consumption. In order to decrease dynamic power of processing elements, it uses one of the power-saving techniques in system level—Dynamic Voltage Scaling while not violating the deadline users specify. Moreover, on the premise that application execution is predictive and exclusive for processing elements, we employ Dynamic Power Management and Binary Search technique to reduce the static power of idle processing elements and last find the optimal number of processing elements. EOTD algorithm not only optimizes the energy consumption of task dependent graph, but also satisfies the QoS requirements service level agreement gives. Compared with VM and LJ-VM algorithm, experimental results demonstrate that EOTD algorithm can achieve larger energy optimization in less optimizing time.","PeriodicalId":429657,"journal":{"name":"2010 Fifth Annual ChinaGrid Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth Annual ChinaGrid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2010.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

At present, power management in High-Performance Computing (HPC) environment is becoming a hot topic owning to its high operation cost, low reliability and environmental impact. In this paper, we investigate energy minimization scheduling algorithm of data dependent tasks in DVS-Enabled cluster system. Considering the data-intensive characteristics, the proposed EOTD (Energy Optimization scheduling for Task Dependent graph) algorithm adopts task clustering to reduce data transmission time and communication energy consumption. In order to decrease dynamic power of processing elements, it uses one of the power-saving techniques in system level—Dynamic Voltage Scaling while not violating the deadline users specify. Moreover, on the premise that application execution is predictive and exclusive for processing elements, we employ Dynamic Power Management and Binary Search technique to reduce the static power of idle processing elements and last find the optimal number of processing elements. EOTD algorithm not only optimizes the energy consumption of task dependent graph, but also satisfies the QoS requirements service level agreement gives. Compared with VM and LJ-VM algorithm, experimental results demonstrate that EOTD algorithm can achieve larger energy optimization in less optimizing time.
支持dvs的集群系统任务依赖图的能量优化调度
目前,高性能计算(HPC)环境下的电源管理因其高运行成本、低可靠性和对环境的影响而成为一个热门话题。本文研究了分布式存储集群系统中数据依赖任务的能量最小化调度算法。考虑到数据密集型的特点,提出的EOTD (Energy Optimization scheduling for Task Dependent graph)算法采用任务聚类来减少数据传输时间和通信能耗。为了降低处理元件的动态功耗,它采用了系统级的一种节能技术——动态电压缩放,同时又不违反用户指定的截止时间。此外,在应用程序执行对处理元素具有预测性和排他性的前提下,我们采用动态功耗管理和二分搜索技术来降低空闲处理元素的静态功耗,最后找到最优的处理元素数量。EOTD算法既优化了任务依赖图的能耗,又满足了服务水平协议给出的QoS要求。实验结果表明,与VM和LJ-VM算法相比,EOTD算法可以在更短的优化时间内实现更大的能量优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信