A 4.8x Faster FPGA-Based Iterative Closest Point Accelerator for Object Pose Estimation of Picking Robot Applications

Atsutake Kosuge, Keisuke Yamamoto, Y. Akamine, T. Yamawaki, T. Oshima
{"title":"A 4.8x Faster FPGA-Based Iterative Closest Point Accelerator for Object Pose Estimation of Picking Robot Applications","authors":"Atsutake Kosuge, Keisuke Yamamoto, Y. Akamine, T. Yamawaki, T. Oshima","doi":"10.1109/FCCM.2019.00072","DOIUrl":null,"url":null,"abstract":"An FPGA-based accelerator for the iterative-closest-point (ICP) algorithm has been proposed, which achieves 4.8-times-faster object-pose estimation by a picking robot compared with the state-of-the-art technique. Experiments of the proposed FPGA-based ICP accelerator using Amazon Picking Contest data sets have confirmed that the object-pose estimation by the ICP takes only 0.6 seconds, and the entire picking process takes 2.0 seconds with power consumption of 6.0 W.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An FPGA-based accelerator for the iterative-closest-point (ICP) algorithm has been proposed, which achieves 4.8-times-faster object-pose estimation by a picking robot compared with the state-of-the-art technique. Experiments of the proposed FPGA-based ICP accelerator using Amazon Picking Contest data sets have confirmed that the object-pose estimation by the ICP takes only 0.6 seconds, and the entire picking process takes 2.0 seconds with power consumption of 6.0 W.
基于4.8倍提速fpga迭代最近点加速器的拾取机器人目标姿态估计
提出了一种基于fpga的迭代最近点(ICP)算法加速器,该算法使拾取机器人的目标姿态估计速度比现有技术快4.8倍。利用亚马逊采摘大赛数据集对所提出的基于fpga的ICP加速器进行实验,结果表明ICP的目标姿态估计时间仅为0.6秒,整个采摘过程耗时2.0秒,功耗为6.0 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信