Using 2-additive measures in nonlinear multiregressions

L. Bock, Zhenyuan Wang
{"title":"Using 2-additive measures in nonlinear multiregressions","authors":"L. Bock, Zhenyuan Wang","doi":"10.1109/GRC.2006.1635883","DOIUrl":null,"url":null,"abstract":"When a nonlinear integral with respect to a signed fuzzy measure is used in multiregression, people face a serious problem that, comparing to the number of variables (attributes), there are exponentially many unknown parameters in the model. However, in many real-world problems, the higher-order interactions among the variables can be omitted, and then only consider the second-order one with an acceptable small error in the result. Thus, a 2-additive measure based on the Mőbius transformation and its inverse can be used to replace the signed fuzzy measure. In such a way, the complexity of the computation will be significantly reduced.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"23 42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

When a nonlinear integral with respect to a signed fuzzy measure is used in multiregression, people face a serious problem that, comparing to the number of variables (attributes), there are exponentially many unknown parameters in the model. However, in many real-world problems, the higher-order interactions among the variables can be omitted, and then only consider the second-order one with an acceptable small error in the result. Thus, a 2-additive measure based on the Mőbius transformation and its inverse can be used to replace the signed fuzzy measure. In such a way, the complexity of the computation will be significantly reduced.
非线性多元回归中2加性测度的应用
当在多元回归中使用关于有符号模糊测度的非线性积分时,人们面临着一个严重的问题,即与变量(属性)的数量相比,模型中存在指数级多的未知参数。然而,在许多现实问题中,可以忽略变量之间的高阶相互作用,然后只考虑二阶相互作用,结果误差较小。因此,基于Mőbius变换及其逆的2加性测度可以用来代替有符号模糊测度。这样,计算的复杂性将大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信