SIMGAT: A Sentiment Analysis Model Based on Graph Attention Mechanism

Jun Zhou, Lin Chen, Jing He
{"title":"SIMGAT: A Sentiment Analysis Model Based on Graph Attention Mechanism","authors":"Jun Zhou, Lin Chen, Jing He","doi":"10.1109/scset55041.2022.00039","DOIUrl":null,"url":null,"abstract":"With the normalization of social media, the popularization of Chinese, how to effectively enable computers to recognize Chinese short-text messages is an important task for network public opinion management and control. Due to the complexity of social media, information between people will have mutual influence, that is, short-text information is interrelated and can be described as a form of graph data. This paper is based on the method of graph neural network for Chinese sentiment analysis, and proposes a method based on improved graph attention mechanism to learn the semantic and structural information between short-text content, and at the same time aggregate short-text information from the field, so as to effectively express the emotional context. The experimental results show that, compared with the existing methods, the graph-based sentiment analysis model is very effective, and the attention mechanism shows a better effect on the sentiment analysis task of short-text.","PeriodicalId":446933,"journal":{"name":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scset55041.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the normalization of social media, the popularization of Chinese, how to effectively enable computers to recognize Chinese short-text messages is an important task for network public opinion management and control. Due to the complexity of social media, information between people will have mutual influence, that is, short-text information is interrelated and can be described as a form of graph data. This paper is based on the method of graph neural network for Chinese sentiment analysis, and proposes a method based on improved graph attention mechanism to learn the semantic and structural information between short-text content, and at the same time aggregate short-text information from the field, so as to effectively express the emotional context. The experimental results show that, compared with the existing methods, the graph-based sentiment analysis model is very effective, and the attention mechanism shows a better effect on the sentiment analysis task of short-text.
基于图注意机制的情感分析模型
随着社交媒体的常态化、中文的普及,如何有效地使计算机识别中文短信是网络舆情管控的重要任务。由于社交媒体的复杂性,人与人之间的信息会产生相互影响,即短文本信息是相互关联的,可以用图形数据的一种形式来描述。本文基于图神经网络的中文情感分析方法,提出了一种基于改进的图注意机制,学习短文本内容之间的语义和结构信息,同时对短文本信息进行现场聚合,从而有效表达情感语境的方法。实验结果表明,与现有方法相比,基于图的情感分析模型非常有效,注意机制在短文本情感分析任务中表现出更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信