ICIP 2022 Challenge: PEDCMI, TOOD Enhanced by Slicing-Aided Fine-Tuning and Inference

Alžběta Turečková, Tomáš Tureček, Z. Oplatková
{"title":"ICIP 2022 Challenge: PEDCMI, TOOD Enhanced by Slicing-Aided Fine-Tuning and Inference","authors":"Alžběta Turečková, Tomáš Tureček, Z. Oplatková","doi":"10.1109/ICIP46576.2022.9897826","DOIUrl":null,"url":null,"abstract":"This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the approach for the Parasitic Egg Detection and Classification in Microscopic Images challenge. Our solution relies on a robust deep learning pipeline implementing a five-fold training schema to pursue the challenge goal. The final methodology utilizes the TOOD model, further enhanced by slicing-aided fine-tuning and inference. The slicing helps to overcome the image size invariability of the dataset and allows the model to access all images in high resolution, and consequently helps it learn detailed features needed to distinguish different classes and find a precise object position. Our results demonstrate the importance of proper data analysis and consequent pre and post-processing to improve prediction performance.
ICIP 2022挑战:通过切片辅助微调和推理增强的PEDCMI, ood
本文介绍了显微镜图像中寄生虫卵的检测与分类方法。我们的解决方案依赖于一个强大的深度学习管道,实现五倍训练模式来实现挑战目标。最后的方法利用tod模型,通过切片辅助微调和推理进一步增强。切片有助于克服数据集图像大小的不变性,使模型能够以高分辨率访问所有图像,从而帮助它学习区分不同类别所需的详细特征,并找到精确的目标位置。我们的结果证明了适当的数据分析和相应的预处理和后处理对于提高预测性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信