Cross-Domain Transfer via Semantic Skill Imitation

Karl Pertsch, Ruta Desai, Vikash Kumar, Franziska Meier, Joseph J. Lim, Dhruv Batra, Akshara Rai
{"title":"Cross-Domain Transfer via Semantic Skill Imitation","authors":"Karl Pertsch, Ruta Desai, Vikash Kumar, Franziska Meier, Joseph J. Lim, Dhruv Batra, Akshara Rai","doi":"10.48550/arXiv.2212.07407","DOIUrl":null,"url":null,"abstract":"We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like\"opening the microwave\"or\"turning on the stove\". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.07407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose an approach for semantic imitation, which uses demonstrations from a source domain, e.g. human videos, to accelerate reinforcement learning (RL) in a different target domain, e.g. a robotic manipulator in a simulated kitchen. Instead of imitating low-level actions like joint velocities, our approach imitates the sequence of demonstrated semantic skills like"opening the microwave"or"turning on the stove". This allows us to transfer demonstrations across environments (e.g. real-world to simulated kitchen) and agent embodiments (e.g. bimanual human demonstration to robotic arm). We evaluate on three challenging cross-domain learning problems and match the performance of demonstration-accelerated RL approaches that require in-domain demonstrations. In a simulated kitchen environment, our approach learns long-horizon robot manipulation tasks, using less than 3 minutes of human video demonstrations from a real-world kitchen. This enables scaling robot learning via the reuse of demonstrations, e.g. collected as human videos, for learning in any number of target domains.
语义技能模仿的跨领域迁移
我们提出了一种语义模仿方法,该方法使用源域(例如人类视频)的演示来加速不同目标域(例如模拟厨房中的机器人机械手)中的强化学习(RL)。我们的方法不是模仿关节速度等低级动作,而是模仿“打开微波炉”或“打开炉子”等已演示的语义技能的顺序。这使我们能够跨环境(例如,真实世界到模拟厨房)和代理实施例(例如,手动人类演示到机械手臂)转移演示。我们评估了三个具有挑战性的跨领域学习问题,并匹配了需要领域内演示的演示加速RL方法的性能。在模拟的厨房环境中,我们的方法使用不到3分钟的真实厨房人类视频演示来学习长期机器人操作任务。这可以通过重复使用演示来扩展机器人的学习,例如收集为人类视频,以便在任意数量的目标领域进行学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信