A Hybrid Meta-Heuristic Approach for Optimal Meter Allocation in Electric Power Distribution Systems

Thales Schuabb Almeida, Lucas Eduardo Silva Braga, L. W. Oliveira, E. J. Oliveira, J. C. S. Souza
{"title":"A Hybrid Meta-Heuristic Approach for Optimal Meter Allocation in Electric Power Distribution Systems","authors":"Thales Schuabb Almeida, Lucas Eduardo Silva Braga, L. W. Oliveira, E. J. Oliveira, J. C. S. Souza","doi":"10.21528/lnlm-vol21-no1-art3","DOIUrl":null,"url":null,"abstract":"The number of nodes present in Electric Power Distribution Systems (EPDS) is a complicating factor for carrying out the State Estimation (SE) and the choice of allocation of available meters affects the quality of observability obtained by the SE. Thus, it is necessary to use optimization methods that evaluate the positions of meters in the system that can contribute to an optimal SE. Artificial Neural Networks (ANN) can perform SE, processing the information obtained by the available meters in an agile way. Meta-heuristics techniques apply to the optimal allocation problem but can be slow processing. Thus, the work seeks to evaluate the potential of a hybrid method that associates the meta-heuristic technique, Artificial Immune System (AIS), with ANNs for evaluating several allocation options in an agile way to find an optimal solution for the allocation of meters.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol21-no1-art3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of nodes present in Electric Power Distribution Systems (EPDS) is a complicating factor for carrying out the State Estimation (SE) and the choice of allocation of available meters affects the quality of observability obtained by the SE. Thus, it is necessary to use optimization methods that evaluate the positions of meters in the system that can contribute to an optimal SE. Artificial Neural Networks (ANN) can perform SE, processing the information obtained by the available meters in an agile way. Meta-heuristics techniques apply to the optimal allocation problem but can be slow processing. Thus, the work seeks to evaluate the potential of a hybrid method that associates the meta-heuristic technique, Artificial Immune System (AIS), with ANNs for evaluating several allocation options in an agile way to find an optimal solution for the allocation of meters.
配电系统电表优化配置的混合元启发式方法
配电系统中节点的数量是进行状态估计的一个复杂因素,而可用仪表配置的选择影响状态估计获得的可观测性质量。因此,有必要使用优化方法来评估系统中仪表的位置,从而有助于获得最佳SE。人工神经网络(Artificial Neural Networks, ANN)可以灵活地对现有仪表获取的信息进行SE处理。元启发式技术适用于最优分配问题,但可能是缓慢的处理。因此,这项工作旨在评估一种混合方法的潜力,该方法将元启发式技术人工免疫系统(AIS)与人工神经网络结合起来,以敏捷的方式评估几种分配方案,以找到分配仪表的最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信