Symmetric Eigen-Wavefunctions of Quantum Dot Bound States Resulting from Geometric Confinement

Wei Li, S. Belling
{"title":"Symmetric Eigen-Wavefunctions of Quantum Dot Bound States Resulting from Geometric Confinement","authors":"Wei Li, S. Belling","doi":"10.1109/EIT.2018.8500244","DOIUrl":null,"url":null,"abstract":"Self-assembled semiconductor quantum dots possess an intrinsic geometric symmetry due to the crystal periodic structure. In order to systematically analyze the symmetric properties of quantum dots' bound states resulting only from geometric confinement, we apply group representation theory. We label each bound state for two kinds of popular quantum dot shapes: pyramid and half ellipsoid with the irreducible representation of the corresponding symmetric groups, i.e., C4v and C2v, respectively. Our study completes all the possible irreducible representation cases of groups C4v and C2v. Using the character theory of point groups, we predict the selection rule for electric dipole induced transitions. We also investigate the impact of quantum dot aspect ratio on the symmetric properties of the state wavefunction. This research provides a solid foundation to continue exploring quantum dot symmetry reduction or broken phenomena because of strain, band-mixing and shape irregularity. The results will benefit the researchers who are interested in quantum dot symmetry related effects such as absorption or emission spectra, or those who are studying quantum dots using analytical or numerical simulation approaches.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-assembled semiconductor quantum dots possess an intrinsic geometric symmetry due to the crystal periodic structure. In order to systematically analyze the symmetric properties of quantum dots' bound states resulting only from geometric confinement, we apply group representation theory. We label each bound state for two kinds of popular quantum dot shapes: pyramid and half ellipsoid with the irreducible representation of the corresponding symmetric groups, i.e., C4v and C2v, respectively. Our study completes all the possible irreducible representation cases of groups C4v and C2v. Using the character theory of point groups, we predict the selection rule for electric dipole induced transitions. We also investigate the impact of quantum dot aspect ratio on the symmetric properties of the state wavefunction. This research provides a solid foundation to continue exploring quantum dot symmetry reduction or broken phenomena because of strain, band-mixing and shape irregularity. The results will benefit the researchers who are interested in quantum dot symmetry related effects such as absorption or emission spectra, or those who are studying quantum dots using analytical or numerical simulation approaches.
几何约束下量子点束缚态的对称本征波函数
由于晶体周期结构,自组装半导体量子点具有固有的几何对称性。为了系统地分析仅由几何约束产生的量子点束缚态的对称性,我们应用群表示理论。我们用相应的对称群C4v和C2v的不可约表示分别标记了两种流行的量子点形状:金字塔和半椭球的每个束缚态。我们的研究完成了C4v和C2v群所有可能的不可约表示情况。利用点群的特征理论,预测了电偶极子诱导跃迁的选择规律。我们还研究了量子点宽高比对态波函数对称特性的影响。本研究为继续探索由于应变、带混合和形状不规则导致的量子点对称性降低或破缺现象提供了坚实的基础。研究结果将有利于那些对量子点对称性相关效应(如吸收或发射光谱)感兴趣的研究人员,或者那些使用分析或数值模拟方法研究量子点的研究人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信