Autoencoder-Based Anomaly Detection in Industrial X-ray Images

Erik Lindgren, C. Zach
{"title":"Autoencoder-Based Anomaly Detection in Industrial X-ray Images","authors":"Erik Lindgren, C. Zach","doi":"10.1115/qnde2021-74428","DOIUrl":null,"url":null,"abstract":"\n Within many quality-critical industries, e.g. the aerospace industry, industrial X-ray inspection is an essential as well as a resource intense part of quality control. Within such industries the X-ray image interpretation is typically still done by humans, therefore, increasing the interpretation automatization would be of great value. We claim, that safe automatic interpretation of industrial X-ray images, requires a robust confidence estimation with respect to out-of-distribution (OOD) data. In this work we have explored if such a confidence estimation can be achieved by comparing input images with a model of the accepted images. For the image model we derived an autoencoder which we trained unsupervised on a public dataset with X-ray images of metal fusion-welds. We achieved a true positive rate at 80–90% at a 4% false positive rate, as well as correctly detected an OOD data example as an anomaly.","PeriodicalId":189764,"journal":{"name":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 48th Annual Review of Progress in Quantitative Nondestructive Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/qnde2021-74428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Within many quality-critical industries, e.g. the aerospace industry, industrial X-ray inspection is an essential as well as a resource intense part of quality control. Within such industries the X-ray image interpretation is typically still done by humans, therefore, increasing the interpretation automatization would be of great value. We claim, that safe automatic interpretation of industrial X-ray images, requires a robust confidence estimation with respect to out-of-distribution (OOD) data. In this work we have explored if such a confidence estimation can be achieved by comparing input images with a model of the accepted images. For the image model we derived an autoencoder which we trained unsupervised on a public dataset with X-ray images of metal fusion-welds. We achieved a true positive rate at 80–90% at a 4% false positive rate, as well as correctly detected an OOD data example as an anomaly.
基于自编码器的工业x射线图像异常检测
在许多质量关键行业中,例如航空航天工业,工业x射线检测是质量控制中必不可少的,也是资源密集型的一部分。在这些行业中,x射线图像解释通常仍然由人类完成,因此,提高解释自动化将具有很大的价值。我们声称,工业x射线图像的安全自动解释需要对分布外(OOD)数据进行稳健的置信度估计。在这项工作中,我们探索了是否可以通过将输入图像与接受图像的模型进行比较来实现这样的置信度估计。对于图像模型,我们推导了一个自动编码器,我们在一个带有金属熔合焊缝x射线图像的公共数据集上进行无监督训练。我们实现了80-90%的真阳性率和4%的假阳性率,并正确检测出了一个异常的OOD数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信