A globally convergent regularized interior point method for constrained optimization

Songqiang Qiu
{"title":"A globally convergent regularized interior point method for constrained optimization","authors":"Songqiang Qiu","doi":"10.1080/10556788.2021.1908283","DOIUrl":null,"url":null,"abstract":"This paper proposes a globally convergent regularized interior point method that involves a specifically designed regularization strategy for constrained optimization. The main concept of the proposed algorithm is that when a proper regularization parameter is selected, the direction obtained from the regularized barrier equation is a descent direction for either the objective function or constraint violation. Accordingly, by embedding a flexible strategy of choosing a regularization parameter in a trust-funnel-like interior point scheme, we propose the new algorithm. Global convergence under the mild assumptions of relaxed constant rank constraint qualification (RCRCQ) and local consistency of the linearized active and equality constraints is shown. Preliminary numerical experiments are conducted, and the results are encouraging.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1908283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a globally convergent regularized interior point method that involves a specifically designed regularization strategy for constrained optimization. The main concept of the proposed algorithm is that when a proper regularization parameter is selected, the direction obtained from the regularized barrier equation is a descent direction for either the objective function or constraint violation. Accordingly, by embedding a flexible strategy of choosing a regularization parameter in a trust-funnel-like interior point scheme, we propose the new algorithm. Global convergence under the mild assumptions of relaxed constant rank constraint qualification (RCRCQ) and local consistency of the linearized active and equality constraints is shown. Preliminary numerical experiments are conducted, and the results are encouraging.
约束优化的全局收敛正则内点法
本文提出了一种全局收敛的正则化内点法,该方法包含了一种特殊设计的正则化策略,用于约束优化。该算法的主要思想是,当选择合适的正则化参数时,由正则化障碍方程得到的方向是目标函数或约束违反的下降方向。为此,在类信任漏斗内点格式中嵌入一种灵活的正则化参数选择策略,提出了一种新的算法。给出了在松弛常秩约束条件(RCRCQ)和线性化主动约束与等式约束局部一致性的温和假设下的全局收敛性。进行了初步的数值实验,结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信