Empirical support for the high-density subset sum decision threshold

Thomas O'Neil, Travis Desell
{"title":"Empirical support for the high-density subset sum decision threshold","authors":"Thomas O'Neil, Travis Desell","doi":"10.1109/CWIT.2015.7255176","DOIUrl":null,"url":null,"abstract":"This article describes several properties of the random problem space for the Subset Sum problem, derived both empirically and analytically. Empirical results support the conjecture that Subset Sum instances always have a solution when the input set S is a set of n elements with a maximum value of m, the target sum t is between m and the sum of the smallest n - 1 elements of S, and n ≥ ⌊m/2⌋ + 1. While the proof of this conjecture remains an open problem, exhaustive enumeration of problem instances has resulted in no counterexamples for values of m ≤ 49. Sequential processing was used to generate the empirical data for values up to m = 40. The SubsetSum@Home volunteer computing project reproduced the results of the sequential code and extended the enumeration beyond m = 49.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article describes several properties of the random problem space for the Subset Sum problem, derived both empirically and analytically. Empirical results support the conjecture that Subset Sum instances always have a solution when the input set S is a set of n elements with a maximum value of m, the target sum t is between m and the sum of the smallest n - 1 elements of S, and n ≥ ⌊m/2⌋ + 1. While the proof of this conjecture remains an open problem, exhaustive enumeration of problem instances has resulted in no counterexamples for values of m ≤ 49. Sequential processing was used to generate the empirical data for values up to m = 40. The SubsetSum@Home volunteer computing project reproduced the results of the sequential code and extended the enumeration beyond m = 49.
高密度子集和决策阈值的经验支持
本文描述了子集和问题的随机问题空间的几个性质,从经验和分析两方面推导了这些性质。当输入集合S为最大值为m的n个元素的集合,目标和t介于m与S中最小n - 1个元素的和之间,且n≥⌊m/2⌋+ 1时,子集和实例总是有解的。虽然这一猜想的证明仍然是一个悬而未决的问题,但对问题实例的详尽列举没有得出m≤49的值的反例。采用顺序处理方法生成m = 40以内的经验数据。SubsetSum@Home志愿者计算项目再现了顺序代码的结果,并将枚举扩展到m = 49之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信