Condorcet's Principle and the Preference Reversal Paradox

Dominik Peters
{"title":"Condorcet's Principle and the Preference Reversal Paradox","authors":"Dominik Peters","doi":"10.4204/EPTCS.251.34","DOIUrl":null,"url":null,"abstract":"We prove that every Condorcet-consistent voting rule can be manipulated by a voter who completely reverses their preference ranking, assuming that there are at least 4 alternatives. This corrects an error and improves a result of [Sanver, M. R. and Zwicker, W. S. (2009). One-way monotonicity as a form of strategy-proofness. Int J Game Theory 38(4), 553-574.] For the case of precisely 4 alternatives, we exactly characterise the number of voters for which this impossibility result can be proven. We also show analogues of our result for irresolute voting rules. We then leverage our result to state a strong form of the Gibbard-Satterthwaite Theorem.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.251.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We prove that every Condorcet-consistent voting rule can be manipulated by a voter who completely reverses their preference ranking, assuming that there are at least 4 alternatives. This corrects an error and improves a result of [Sanver, M. R. and Zwicker, W. S. (2009). One-way monotonicity as a form of strategy-proofness. Int J Game Theory 38(4), 553-574.] For the case of precisely 4 alternatives, we exactly characterise the number of voters for which this impossibility result can be proven. We also show analogues of our result for irresolute voting rules. We then leverage our result to state a strong form of the Gibbard-Satterthwaite Theorem.
孔多塞原理与偏好反转悖论
我们证明了每个孔多塞一致的投票规则都可以被一个完全颠倒其偏好排序的选民操纵,假设至少有4个选择。这纠正了Sanver, M. R. and Zwicker, W. S.(2009)的一个错误并改进了结果。单向单调性作为策略证明的一种形式。[J]博弈论38(4),553-574。对于只有4种选择的情况,我们精确地描述了能够证明这种不可能结果的选民的数量。我们还展示了不确定投票规则的类似结果。然后我们利用我们的结果来陈述Gibbard-Satterthwaite定理的强形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信