An Gaussian-Mixture Hidden Markov Models for Action Recognition Based on Key Frame

Jinhong Li, T. Lei, Fengquan Zhang
{"title":"An Gaussian-Mixture Hidden Markov Models for Action Recognition Based on Key Frame","authors":"Jinhong Li, T. Lei, Fengquan Zhang","doi":"10.1109/CISP-BMEI.2018.8633176","DOIUrl":null,"url":null,"abstract":"When using Gaussian-Mixture Hidden Markov Models (GMM-HMM) for action recognition, the accuracy of recognition is greatly improved. However, the number of Gaussian Mixed Models (GMM) and Hidden Markov Models (HMM) classifications needs to be defined. In this paper, we propose a key frame-based GMM-HMM motion recognition method. Specifically, we use the minimum reconstruction error method to determine the number of key frames (KFN). Then, we set the number of GMM and HMM classifications to be KFN. In the end, we use experiments with three different dataset to test our method.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

When using Gaussian-Mixture Hidden Markov Models (GMM-HMM) for action recognition, the accuracy of recognition is greatly improved. However, the number of Gaussian Mixed Models (GMM) and Hidden Markov Models (HMM) classifications needs to be defined. In this paper, we propose a key frame-based GMM-HMM motion recognition method. Specifically, we use the minimum reconstruction error method to determine the number of key frames (KFN). Then, we set the number of GMM and HMM classifications to be KFN. In the end, we use experiments with three different dataset to test our method.
基于关键帧的高斯混合隐马尔可夫模型动作识别
利用高斯混合隐马尔可夫模型(GMM-HMM)进行动作识别,大大提高了识别的准确率。然而,需要定义高斯混合模型(GMM)和隐马尔可夫模型(HMM)分类的数量。本文提出了一种基于关键帧的GMM-HMM运动识别方法。具体来说,我们使用最小重构误差法来确定关键帧数(KFN)。然后,我们将GMM和HMM分类的个数设置为KFN。最后,我们使用三个不同数据集的实验来测试我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信