Enlarging drug dictionary with semi-supervised learning for Drug Entity Recognition

Donghuo Zeng, Chengjie Sun, Lei Lin, Bingquan Liu
{"title":"Enlarging drug dictionary with semi-supervised learning for Drug Entity Recognition","authors":"Donghuo Zeng, Chengjie Sun, Lei Lin, Bingquan Liu","doi":"10.1109/BIBM.2016.7822818","DOIUrl":null,"url":null,"abstract":"Drug Entity Recognition (DER) is a crucial task for information extraction in biomedical text. Much of previous work for DER using known drugs to build features, however, the known drug resources are limited. In this paper, we proposed a semi-supervised learning to extend an existing drug dictionary. With the extended dictionary, the features for DER can be enriched. Using Conditional Random Fields (CRF) model with the enriched features, an F-measure of 89.26% is achieved on DDIExtraction2013 challenge data set, which outperforms the best system of the DDIExtraction 2013 challenge.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Drug Entity Recognition (DER) is a crucial task for information extraction in biomedical text. Much of previous work for DER using known drugs to build features, however, the known drug resources are limited. In this paper, we proposed a semi-supervised learning to extend an existing drug dictionary. With the extended dictionary, the features for DER can be enriched. Using Conditional Random Fields (CRF) model with the enriched features, an F-measure of 89.26% is achieved on DDIExtraction2013 challenge data set, which outperforms the best system of the DDIExtraction 2013 challenge.
基于半监督学习的药品实体识别扩充药品字典
药物实体识别(DER)是生物医学文本信息提取的一项重要任务。以往的DER研究大多是利用已知的药物来构建特征,然而,已知的药物资源有限。在本文中,我们提出了一种半监督学习来扩展现有的药物字典。使用扩展字典,可以丰富DER的特性。采用特征丰富的条件随机场(CRF)模型,在DDIExtraction2013挑战数据集上的f度量值达到89.26%,优于DDIExtraction2013挑战的最佳系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信