Utilizing Domain Knowledge in Neural Network Models for Peptide-Allele Binding Prediction

V. Megalooikonomou, D. Kontos, N. DeClaris, P. Cano
{"title":"Utilizing Domain Knowledge in Neural Network Models for Peptide-Allele Binding Prediction","authors":"V. Megalooikonomou, D. Kontos, N. DeClaris, P. Cano","doi":"10.1109/CIBCB.2005.1594941","DOIUrl":null,"url":null,"abstract":"We developed Radial Basis Function Neural Networks (RBFNN) for allele-peptide binding prediction. We explored utilizing prior domain knowledge in order to optimize the prediction. We investigated the effect of encoding of inputs of the RBFNN considering chemical properties of amino acids, detecting motifs in alleles and reducing the dimensionality based on common motifs discovered. We also explored a number of parameters such as the data set size, unknown-binding data generation, model architecture and training algorithms. Our approach improved the prediction accuracy of peptide-allele binding reaching up to 90% for our best models.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We developed Radial Basis Function Neural Networks (RBFNN) for allele-peptide binding prediction. We explored utilizing prior domain knowledge in order to optimize the prediction. We investigated the effect of encoding of inputs of the RBFNN considering chemical properties of amino acids, detecting motifs in alleles and reducing the dimensionality based on common motifs discovered. We also explored a number of parameters such as the data set size, unknown-binding data generation, model architecture and training algorithms. Our approach improved the prediction accuracy of peptide-allele binding reaching up to 90% for our best models.
利用神经网络模型中的领域知识进行多肽-等位基因结合预测
我们开发了径向基函数神经网络(RBFNN)用于等位基因肽结合预测。我们探索了利用先验领域知识来优化预测。考虑到氨基酸的化学性质、检测等位基因中的基序以及基于发现的共同基序降低维数,我们研究了RBFNN输入编码的影响。我们还探讨了一些参数,如数据集大小、未知绑定数据生成、模型架构和训练算法。我们的方法提高了多肽-等位基因结合的预测精度,在我们的最佳模型中达到90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信