Fractal and Wada escape basins in the chaotic particle drift motion in tokamaks with electrostatic fluctuations

L. Souza, A. C. Mathias, I. Caldas, Y. Elskens, R. Viana
{"title":"Fractal and Wada escape basins in the chaotic particle drift motion in tokamaks with electrostatic fluctuations","authors":"L. Souza, A. C. Mathias, I. Caldas, Y. Elskens, R. Viana","doi":"10.1063/5.0147679","DOIUrl":null,"url":null,"abstract":"The E×B drift motion of particles in tokamaks provides valuable information on the turbulence-driven anomalous transport. One of the characteristic features of the drift motion dynamics is the presence of chaotic orbits for which the guiding center can experience large-scale drifts. If one or more exits are placed so that they intercept chaotic orbits, the corresponding escape basins structure is complicated and, indeed, exhibits fractal structures. We investigate those structures through a number of numerical diagnostics, tailored to quantify the final-state uncertainty related to the fractal escape basins. We estimate the escape basin boundary dimension through the uncertainty exponent method and quantify final-state uncertainty by the basin entropy and the basin boundary entropy. Finally, we recall the Wada property for the case of three or more escape basins. This property is verified both qualitatively and quantitatively using a grid approach.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0147679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The E×B drift motion of particles in tokamaks provides valuable information on the turbulence-driven anomalous transport. One of the characteristic features of the drift motion dynamics is the presence of chaotic orbits for which the guiding center can experience large-scale drifts. If one or more exits are placed so that they intercept chaotic orbits, the corresponding escape basins structure is complicated and, indeed, exhibits fractal structures. We investigate those structures through a number of numerical diagnostics, tailored to quantify the final-state uncertainty related to the fractal escape basins. We estimate the escape basin boundary dimension through the uncertainty exponent method and quantify final-state uncertainty by the basin entropy and the basin boundary entropy. Finally, we recall the Wada property for the case of three or more escape basins. This property is verified both qualitatively and quantitatively using a grid approach.
带静电波动的托卡马克中混沌粒子漂移运动的分形和和田逃逸盆地
托卡马克中粒子的E×B漂移运动为湍流驱动的异常输运提供了有价值的信息。漂移运动动力学的特征之一是混沌轨道的存在,引导中心可以经历大范围的漂移。如果设置一个或多个出口,使其与混沌轨道相交,则相应的逃逸盆地结构复杂,实际上表现为分形结构。我们通过一些数值诊断来研究这些结构,以量化与分形逸出盆地相关的最终状态不确定性。通过不确定性指数法估算出逃逸盆地边界维数,并利用盆地熵和盆地边界熵量化最终状态的不确定性。最后,我们回顾Wada性质的情况下,三个或更多的逸出盆地。使用网格方法对该属性进行定性和定量验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信