Monte Carlo Initialization for Multi-Sensor Bearing Only Tracking

A. S. Housfater, Xiao-Ping Zhang, Yifeng Zhou
{"title":"Monte Carlo Initialization for Multi-Sensor Bearing Only Tracking","authors":"A. S. Housfater, Xiao-Ping Zhang, Yifeng Zhou","doi":"10.1109/CAMSAP.2007.4497987","DOIUrl":null,"url":null,"abstract":"A new algorithm for particle filter initialization for multi-sensor bearing only tracking is developed to enhance tracker performance and stability. Multiple bearing observations are used by a least squares technique to form multiple initial position estimates; these estimates are in turn used to compute the statistics of the initial state distribution. Simulated data is used to demonstrate the performance and efficiency of the algorithm by comparing the new initialization technique to a filter initialized with the true initial state.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new algorithm for particle filter initialization for multi-sensor bearing only tracking is developed to enhance tracker performance and stability. Multiple bearing observations are used by a least squares technique to form multiple initial position estimates; these estimates are in turn used to compute the statistics of the initial state distribution. Simulated data is used to demonstrate the performance and efficiency of the algorithm by comparing the new initialization technique to a filter initialized with the true initial state.
多传感器方位跟踪的蒙特卡罗初始化
为了提高多传感器单轴承跟踪的性能和稳定性,提出了一种新的粒子滤波初始化算法。利用最小二乘技术对多个方位观测值进行初始位置估计;这些估计值依次用于计算初始状态分布的统计信息。仿真数据通过将新的初始化技术与用真实初始状态初始化的滤波器进行比较,证明了该算法的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信