A Hybrid Approach for Optimizing Arabic Semantic Query Expansion

Azzah Allahim, A. Cherif, Abdessamad Imine
{"title":"A Hybrid Approach for Optimizing Arabic Semantic Query Expansion","authors":"Azzah Allahim, A. Cherif, Abdessamad Imine","doi":"10.1109/AICCSA53542.2021.9686890","DOIUrl":null,"url":null,"abstract":"Nowadays, information retrieval systems face significant challenges in providing users with accurate information due to the enormous growth of information. To better reformulate the query and narrow its results, semantic query expansion techniques add semantically related terms to the original query. However, semantic query expansion for Arabic queries is still a challenge due to the lack of rich semantic sources. Most of the existing solutions rely on using either English sources or specific-domain Arabic ontologies. Using English sources requires a translation phase which may lead to query drift, thus providing unrelated expansion terms. In this paper, we provide an overview of the query expansion approaches. Besides, we propose a hybrid comprehensive reference framework for Arabic semantic query expansion that overcomes the lack of Arabic semantic sources by using rich English ontologies to complement the limited Arabic sources (Arabic Wordnet) currently available. It ensures the Arabic-English translation process using a customized machine learning translation model to avoid query drifting. It also transforms natural language to SPARQL (an ontology query language) to easily query English sources (e.g., DBpedia). For enhanced accuracy, it provides an optimization module where meta-heuristics can be used for pertinent terms selection. This work represents a step forward in combining English sources and AI to design a practical Arabic semantic expansion.","PeriodicalId":423896,"journal":{"name":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA53542.2021.9686890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, information retrieval systems face significant challenges in providing users with accurate information due to the enormous growth of information. To better reformulate the query and narrow its results, semantic query expansion techniques add semantically related terms to the original query. However, semantic query expansion for Arabic queries is still a challenge due to the lack of rich semantic sources. Most of the existing solutions rely on using either English sources or specific-domain Arabic ontologies. Using English sources requires a translation phase which may lead to query drift, thus providing unrelated expansion terms. In this paper, we provide an overview of the query expansion approaches. Besides, we propose a hybrid comprehensive reference framework for Arabic semantic query expansion that overcomes the lack of Arabic semantic sources by using rich English ontologies to complement the limited Arabic sources (Arabic Wordnet) currently available. It ensures the Arabic-English translation process using a customized machine learning translation model to avoid query drifting. It also transforms natural language to SPARQL (an ontology query language) to easily query English sources (e.g., DBpedia). For enhanced accuracy, it provides an optimization module where meta-heuristics can be used for pertinent terms selection. This work represents a step forward in combining English sources and AI to design a practical Arabic semantic expansion.
一种优化阿拉伯语语义查询扩展的混合方法
如今,由于信息的巨大增长,信息检索系统在向用户提供准确信息方面面临着重大挑战。为了更好地重新表述查询并缩小查询结果的范围,语义查询扩展技术向原始查询添加了语义相关的术语。然而,由于缺乏丰富的语义源,阿拉伯语查询的语义扩展仍然是一个挑战。大多数现有的解决方案依赖于使用英语源或特定领域的阿拉伯语本体。使用英文源需要一个翻译阶段,这可能导致查询漂移,从而提供不相关的扩展术语。在本文中,我们提供了查询扩展方法的概述。此外,我们提出了一个阿拉伯语语义查询扩展的混合综合参考框架,该框架通过使用丰富的英语本体来补充现有有限的阿拉伯语源(Arabic Wordnet),从而克服了阿拉伯语语义源缺乏的问题。它使用定制的机器学习翻译模型确保阿拉伯语-英语翻译过程,以避免查询漂移。它还将自然语言转换为SPARQL(一种本体查询语言),以便轻松地查询英语源(例如,DBpedia)。为了提高准确性,它提供了一个优化模块,其中元启发式可以用于相关的术语选择。这项工作代表了将英语资源和人工智能结合起来设计实用的阿拉伯语语义扩展的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信