Characteristic of Quaternion Algebra Over Fields

Muhammad Faldiyan, E. Carnia, Asep K. Supriatna
{"title":"Characteristic of Quaternion Algebra Over Fields","authors":"Muhammad Faldiyan, E. Carnia, Asep K. Supriatna","doi":"10.18860/ca.v7i4.17625","DOIUrl":null,"url":null,"abstract":"Quaternion is an extension of the complex number system. Quaternion are discovered by formulating 4 points in 4-dimensional vector space using the cross product between two standard vectors. Quaternion algebra over a field is a 4-dimensional vector space with bases  and the elements of the algebra are members of the field. Each element in quaternion algebra has an inverse, despite the fact that the ring is not commutative. Based on this, the purpose of this study is to obtain the characteristics of split quaternion algebra and determine how it interacts with central simple algebra. The research method used in this paper is literature study on quaternion algebra, field and central simple algebra. The results of this study establish the equivalence of split quaternion algebra as well as the theorem relating central simple algebra and quaternion algebra. The conclusion obtained from this study is that split quaternion algebra has five different characteristics and quaternion algebra is a central simple algebra with dimensions less than equal to four.","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v7i4.17625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quaternion is an extension of the complex number system. Quaternion are discovered by formulating 4 points in 4-dimensional vector space using the cross product between two standard vectors. Quaternion algebra over a field is a 4-dimensional vector space with bases  and the elements of the algebra are members of the field. Each element in quaternion algebra has an inverse, despite the fact that the ring is not commutative. Based on this, the purpose of this study is to obtain the characteristics of split quaternion algebra and determine how it interacts with central simple algebra. The research method used in this paper is literature study on quaternion algebra, field and central simple algebra. The results of this study establish the equivalence of split quaternion algebra as well as the theorem relating central simple algebra and quaternion algebra. The conclusion obtained from this study is that split quaternion algebra has five different characteristics and quaternion algebra is a central simple algebra with dimensions less than equal to four.
域上四元数代数的特征
四元数是复数系统的一种扩展。四元数是通过使用两个标准向量之间的叉乘在四维向量空间中表示4个点来发现的。场上的四元数代数是一个具有基的四维向量空间,代数的元素是场的成员。四元数代数中的每个元素都有一个逆,尽管环是不可交换的。基于此,本研究的目的是获得分裂四元数代数的特征,并确定其与中心简单代数的相互作用。本文采用的研究方法是四元数代数、场和中心简单代数的文献研究。本文的研究结果建立了分裂四元数代数的等价性,以及中心简单代数与四元数代数的关系定理。本研究得出的结论是:分裂四元数代数具有五种不同的特征,四元数代数是一个小于等于四维的中心简单代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信