Expectation-driven autonomous learning and interaction system

B. Bolder, H. Brandl, Martin Heracles, H. Janssen, Inna Mikhailova, Jens Schmüdderich, C. Goerick
{"title":"Expectation-driven autonomous learning and interaction system","authors":"B. Bolder, H. Brandl, Martin Heracles, H. Janssen, Inna Mikhailova, Jens Schmüdderich, C. Goerick","doi":"10.1109/ICHR.2008.4756030","DOIUrl":null,"url":null,"abstract":"We introduce our latest autonomous learning and interaction system instance ALIS 2. It comprises different sensing modalities for visual (depth blobs, planar surfaces, motion) and auditory (speech, localization) signals and self-collision free behavior generation on the robot ASIMO. The system design emphasizes the split into a completely autonomous reactive layer and an expectation generation layer. Different feature channels can be classified and named with arbitrary speech labels in on-line learning sessions. The feasibility of the proposed approach is shown by interaction experiments.","PeriodicalId":402020,"journal":{"name":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHR.2008.4756030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We introduce our latest autonomous learning and interaction system instance ALIS 2. It comprises different sensing modalities for visual (depth blobs, planar surfaces, motion) and auditory (speech, localization) signals and self-collision free behavior generation on the robot ASIMO. The system design emphasizes the split into a completely autonomous reactive layer and an expectation generation layer. Different feature channels can be classified and named with arbitrary speech labels in on-line learning sessions. The feasibility of the proposed approach is shown by interaction experiments.
期望驱动的自主学习与交互系统
介绍了我们最新的自主学习与交互系统实例alis2。它包括视觉(深度斑点、平面、运动)和听觉(语音、定位)信号的不同传感模式,以及机器人ASIMO的自碰撞无行为生成。系统设计强调将系统划分为完全自主的反应层和期望生成层。在在线学习过程中,不同的特征通道可以用任意的语音标签进行分类和命名。交互实验表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信