Uncertainty Boundaries for Complex Objects in Augmented Reality

Jiajian Chen, B. MacIntyre
{"title":"Uncertainty Boundaries for Complex Objects in Augmented Reality","authors":"Jiajian Chen, B. MacIntyre","doi":"10.1109/VR.2008.4480784","DOIUrl":null,"url":null,"abstract":"Registration errors between the physical world and computer- generated objects are a central problem in Augmented Reality (AR) systems. Some existing AR systems have demonstrated how to dynamically estimate registration errors based on estimates of spatial errors in the system. Using these error estimates, these systems also demonstrated a number of ways of ameliorating the effects of registration error. One central part of this previous work was the creation and use of error regions around objects; unfortunately, the analytic methods used only created accurate regions for simple convex objects. In this paper, we present a simple and stable algorithm for generating the uncertainty regions for complex objects, including non-convex objects and objects with interior holes. We demonstrate how our approach can be used to create a set of more accurate error-based highlights in the presence of registration error, and also be used as a general highlighting mechanism.","PeriodicalId":173744,"journal":{"name":"2008 IEEE Virtual Reality Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Virtual Reality Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2008.4480784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Registration errors between the physical world and computer- generated objects are a central problem in Augmented Reality (AR) systems. Some existing AR systems have demonstrated how to dynamically estimate registration errors based on estimates of spatial errors in the system. Using these error estimates, these systems also demonstrated a number of ways of ameliorating the effects of registration error. One central part of this previous work was the creation and use of error regions around objects; unfortunately, the analytic methods used only created accurate regions for simple convex objects. In this paper, we present a simple and stable algorithm for generating the uncertainty regions for complex objects, including non-convex objects and objects with interior holes. We demonstrate how our approach can be used to create a set of more accurate error-based highlights in the presence of registration error, and also be used as a general highlighting mechanism.
增强现实中复杂对象的不确定性边界
物理世界和计算机生成的对象之间的配准错误是增强现实(AR)系统中的一个核心问题。一些现有的AR系统已经演示了如何基于系统中空间误差的估计来动态估计配准误差。利用这些误差估计,这些系统还展示了一些改善配准误差影响的方法。先前工作的一个核心部分是创建和使用对象周围的误差区域;不幸的是,所用的分析方法只能为简单的凸对象创建精确的区域。本文提出了一种简单稳定的复杂物体不确定性区域生成算法,包括非凸物体和带有内孔的物体。我们演示了如何使用我们的方法在存在注册错误的情况下创建一组更准确的基于错误的突出显示,并将其用作通用的突出显示机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信