FRORSS: Fast result object retrieval using similarity search on cloud

S. Raghavendra, K. Nithyashree, C. Geeta, R. Buyya, K. Venugopal, S. Iyengar, L. Patnaik
{"title":"FRORSS: Fast result object retrieval using similarity search on cloud","authors":"S. Raghavendra, K. Nithyashree, C. Geeta, R. Buyya, K. Venugopal, S. Iyengar, L. Patnaik","doi":"10.1109/DISCOVER.2016.7806245","DOIUrl":null,"url":null,"abstract":"This paper involves a cloud computing environment in which the data owner out sources the similarity search service to a third party service provider. The user provides an example query to the server to retrieve similar data. Privacy of the outsourced data is important because they may be sensitive, valuable or confidential data. The data should be made available to the authorized client/client groups, but not to be revealed to the service provider in which the data is stored. Given this scenario, the paper presents a technique called FRORSS which has build phase, data transformation and search phase. The build phase is about uploading the data; the data transformation phase transforms the data before submitting it to the service provider for similarity queries on the transformed data; search phase involves searching similar object with respect to query object. Experiments have been carried out on real data sets which exhibits that the proposed work is capable of providing privacy and achieving accuracy at a lower value of result measure in comparision with FDH [1].","PeriodicalId":383554,"journal":{"name":"2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"130 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER.2016.7806245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper involves a cloud computing environment in which the data owner out sources the similarity search service to a third party service provider. The user provides an example query to the server to retrieve similar data. Privacy of the outsourced data is important because they may be sensitive, valuable or confidential data. The data should be made available to the authorized client/client groups, but not to be revealed to the service provider in which the data is stored. Given this scenario, the paper presents a technique called FRORSS which has build phase, data transformation and search phase. The build phase is about uploading the data; the data transformation phase transforms the data before submitting it to the service provider for similarity queries on the transformed data; search phase involves searching similar object with respect to query object. Experiments have been carried out on real data sets which exhibits that the proposed work is capable of providing privacy and achieving accuracy at a lower value of result measure in comparision with FDH [1].
FRORSS:基于云相似性搜索的快速结果对象检索
本文涉及一个云计算环境,其中数据所有者将相似度搜索服务外包给第三方服务提供商。用户向服务器提供一个示例查询来检索类似的数据。外包数据的隐私很重要,因为它们可能是敏感、有价值或机密的数据。数据应提供给授权的客户端/客户端组,但不应透露给存储数据的服务提供商。针对这种情况,本文提出了一种名为FRORSS的技术,该技术分为构建阶段、数据转换阶段和搜索阶段。构建阶段是关于上传数据;数据转换阶段在将数据提交给服务提供者以对转换后的数据进行相似性查询之前对数据进行转换;搜索阶段是相对于查询对象搜索相似对象的阶段。在真实数据集上进行的实验表明,与FDH相比,所提出的工作能够在较低的结果度量值下提供隐私并实现准确性[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信