MixGCF

Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu Wang, Jie Tang
{"title":"MixGCF","authors":"Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu Wang, Jie Tang","doi":"10.1145/3447548.3467408","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have recently emerged as state-of-the-art collaborative filtering (CF) solution. A fundamental challenge of CF is to distill negative signals from the implicit feedback, but negative sampling in GNN-based CF has been largely unexplored. In this work, we propose to study negative sampling by leveraging both the user-item graph structure and GNNs' aggregation process. We present the MixGCF method---a general negative sampling plugin that can be directly used to train GNN-based recommender systems. In MixGCF, rather than sampling raw negatives from data, we design the hop mixing technique to synthesize hard negatives. Specifically, the idea of hop mixing is to generate the synthetic negative by aggregating embeddings from different layers of raw negatives' neighborhoods. The layer and neighborhood selection process are optimized by a theoretically-backed hard selection strategy. Extensive experiments demonstrate that by using MixGCF, state-of-the-art GNN-based recommendation models can be consistently and significantly improved, e.g., 26% for NGCF and 22% for LightGCN in terms of NDCG@20.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

Graph neural networks (GNNs) have recently emerged as state-of-the-art collaborative filtering (CF) solution. A fundamental challenge of CF is to distill negative signals from the implicit feedback, but negative sampling in GNN-based CF has been largely unexplored. In this work, we propose to study negative sampling by leveraging both the user-item graph structure and GNNs' aggregation process. We present the MixGCF method---a general negative sampling plugin that can be directly used to train GNN-based recommender systems. In MixGCF, rather than sampling raw negatives from data, we design the hop mixing technique to synthesize hard negatives. Specifically, the idea of hop mixing is to generate the synthetic negative by aggregating embeddings from different layers of raw negatives' neighborhoods. The layer and neighborhood selection process are optimized by a theoretically-backed hard selection strategy. Extensive experiments demonstrate that by using MixGCF, state-of-the-art GNN-based recommendation models can be consistently and significantly improved, e.g., 26% for NGCF and 22% for LightGCN in terms of NDCG@20.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信