A Hybrid Bayesian Network Structure Learning Algorithm in Equivalence Class Space

Xiaohan Liu, Xiaoguang Gao, Xinxin Ru, Zidong Wang
{"title":"A Hybrid Bayesian Network Structure Learning Algorithm in Equivalence Class Space","authors":"Xiaohan Liu, Xiaoguang Gao, Xinxin Ru, Zidong Wang","doi":"10.1109/ICCRE57112.2023.10155599","DOIUrl":null,"url":null,"abstract":"Greedy equivalence search (GES) is a well-known Bayesian network structure learning algorithm in equivalence class space (E-space). However, the extensive search space limits the efficiency of GES. In this paper, we propose a hybrid method to improve GES. We use mutual information to determine the strongly connected components (SCCs) graph. The SCCs graph is converted to E-space, and we take it as the initial graph of GES. The experiments reveal that our proposed approach significantly prunes the search space of GES and improves the efficiency of GES. Compared with the state-of-the-art methods, our method also has excellent accuracy.","PeriodicalId":285164,"journal":{"name":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRE57112.2023.10155599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Greedy equivalence search (GES) is a well-known Bayesian network structure learning algorithm in equivalence class space (E-space). However, the extensive search space limits the efficiency of GES. In this paper, we propose a hybrid method to improve GES. We use mutual information to determine the strongly connected components (SCCs) graph. The SCCs graph is converted to E-space, and we take it as the initial graph of GES. The experiments reveal that our proposed approach significantly prunes the search space of GES and improves the efficiency of GES. Compared with the state-of-the-art methods, our method also has excellent accuracy.
等价类空间中的混合贝叶斯网络结构学习算法
贪婪等价搜索(GES)是一种著名的等价类空间(E-space)贝叶斯网络结构学习算法。然而,庞大的搜索空间限制了GES的效率。本文提出了一种改进GES的混合方法。我们利用互信息来确定强连通分量图。将SCCs图转换为e -空间,作为GES的初始图。实验结果表明,本文提出的方法显著地压缩了GES的搜索空间,提高了GES的搜索效率。与最先进的方法相比,我们的方法也具有很好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信