Offset-free adaptive nonlinear model predictive control for pneumatic servo system

Bahareh Vatankhah, M. Farrokhi
{"title":"Offset-free adaptive nonlinear model predictive control for pneumatic servo system","authors":"Bahareh Vatankhah, M. Farrokhi","doi":"10.1109/ICROM.2014.6991018","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive nonlinear model predictive control method with zero steady-state error (called offset free) in the presence of the plant-model mismatch and external disturbances. A neural network model is trained online to predict the process output recursively over the prediction horizon. The output of the neural network is modified by the current output prediction error to achieve offset-free model predictive control method. The stability of the closed-loop system is shown using the Lyapunov direct method. Simulation results on a pneumatic servo system show effectiveness of the control strategy as compared with the recently reported methods in literature under plant-model mismatches and unmeasured disturbances.","PeriodicalId":177375,"journal":{"name":"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)","volume":"42 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICROM.2014.6991018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an adaptive nonlinear model predictive control method with zero steady-state error (called offset free) in the presence of the plant-model mismatch and external disturbances. A neural network model is trained online to predict the process output recursively over the prediction horizon. The output of the neural network is modified by the current output prediction error to achieve offset-free model predictive control method. The stability of the closed-loop system is shown using the Lyapunov direct method. Simulation results on a pneumatic servo system show effectiveness of the control strategy as compared with the recently reported methods in literature under plant-model mismatches and unmeasured disturbances.
气动伺服系统的无偏移自适应非线性模型预测控制
本文提出了一种在存在厂模失配和外部干扰的情况下具有零稳态误差(称为无偏移)的自适应非线性模型预测控制方法。在线训练神经网络模型,在预测范围内递归预测过程输出。利用当前输出预测误差对神经网络的输出进行修正,实现无偏置模型预测控制。用李雅普诺夫直接法证明了闭环系统的稳定性。对气动伺服系统的仿真结果表明,在植物模型失配和不可测干扰下,该控制策略与文献中报道的控制方法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信