Subthreshold stimulus encoding on a stochastic scale-free neuronal network

Ergin Yılmaz, M. Ozer, B. Şen
{"title":"Subthreshold stimulus encoding on a stochastic scale-free neuronal network","authors":"Ergin Yılmaz, M. Ozer, B. Şen","doi":"10.1109/SIU.2010.5652536","DOIUrl":null,"url":null,"abstract":"Random networks with complex topology arise in many different fields of science. Recently, it has been shown that existing network models fail to incorporate two common features of real networks in nature: First, real networks are open and continuously grow by addition of new elements, and second, a new element connects preferentially to an element that already has a large number of connections. Therefore, a new network model, called a scale-free (SF) network, has been proposed based on these two features. In this study, we study the subthreshold periodic stimulus encoding on a stochastic SF neuronal network based on the collective firing regularity. The network consists of identical Hodgkin-Huxley (HH) neurons. We show that the collective firing (spiking) regularity becomes maximal at a given stimulus frequency, corresponding to the frequency of the subthreshold oscillations of HH neurons. We also show that this best regularity can be obtained if the coupling strength and average degree of connectivity have their optimal values.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5652536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Random networks with complex topology arise in many different fields of science. Recently, it has been shown that existing network models fail to incorporate two common features of real networks in nature: First, real networks are open and continuously grow by addition of new elements, and second, a new element connects preferentially to an element that already has a large number of connections. Therefore, a new network model, called a scale-free (SF) network, has been proposed based on these two features. In this study, we study the subthreshold periodic stimulus encoding on a stochastic SF neuronal network based on the collective firing regularity. The network consists of identical Hodgkin-Huxley (HH) neurons. We show that the collective firing (spiking) regularity becomes maximal at a given stimulus frequency, corresponding to the frequency of the subthreshold oscillations of HH neurons. We also show that this best regularity can be obtained if the coupling strength and average degree of connectivity have their optimal values.
随机无标度神经网络的阈下刺激编码
具有复杂拓扑结构的随机网络出现在许多不同的科学领域。最近的研究表明,现有的网络模型在本质上未能纳入现实网络的两个共同特征:一是现实网络是开放的,并通过添加新元素不断增长;二是新元素优先连接已经拥有大量连接的元素。因此,基于这两个特征,提出了一种新的网络模型,称为无标度网络(SF)。在本研究中,我们研究了基于集合放电规律的随机SF神经网络的阈下周期刺激编码。该网络由相同的霍奇金-赫胥黎(HH)神经元组成。我们表明,在给定的刺激频率下,与HH神经元的阈下振荡频率相对应,集体放电(尖峰)规律达到最大。我们还表明,当耦合强度和平均连通性有其最优值时,可以获得这种最佳规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信