An unsupervised collaborative learning method to refine classification hierarchies

Cédric Wemmert, P. Gançarski, J. Korczak
{"title":"An unsupervised collaborative learning method to refine classification hierarchies","authors":"Cédric Wemmert, P. Gançarski, J. Korczak","doi":"10.1109/TAI.1999.809797","DOIUrl":null,"url":null,"abstract":"This article deals with the design of a hybrid learning system. This system integrates different kinds of unsupervised learning methods and gives a set of class hierarchies as the result. The classes in these hierarchies are very similar. The method occurrences compare their results and automatically refine them to try to make them converge towards a unique hierarchy that unifies all the results. Thus, the system decreases the importance of the initial choices made when initializing an unsupervised learning (the choice of the method and its parameters) and to solve some of the limitations of the methods used such as an imposed number of classes, a non-hierarchical result, or the size of the hierarchy.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This article deals with the design of a hybrid learning system. This system integrates different kinds of unsupervised learning methods and gives a set of class hierarchies as the result. The classes in these hierarchies are very similar. The method occurrences compare their results and automatically refine them to try to make them converge towards a unique hierarchy that unifies all the results. Thus, the system decreases the importance of the initial choices made when initializing an unsupervised learning (the choice of the method and its parameters) and to solve some of the limitations of the methods used such as an imposed number of classes, a non-hierarchical result, or the size of the hierarchy.
一种改进分类层次的无监督协作学习方法
本文讨论了一个混合学习系统的设计。该系统集成了不同的无监督学习方法,并给出了一套类层次结构。这些层次结构中的类非常相似。方法事件比较它们的结果,并自动改进它们,试图使它们收敛到统一所有结果的唯一层次结构。因此,在初始化无监督学习(方法及其参数的选择)时,系统降低了初始选择的重要性,并解决了所使用方法的一些限制,如强加的类数量、非分层结果或分层的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信