Discriminative multi-layer feed-forward networks

S. Katagiri, C.-H. Lee, B. Juang
{"title":"Discriminative multi-layer feed-forward networks","authors":"S. Katagiri, C.-H. Lee, B. Juang","doi":"10.1109/NNSP.1991.239540","DOIUrl":null,"url":null,"abstract":"The authors propose a new family of multi-layer, feed-forward network (FFN) architectures. This framework allows examination of several feed-forward networks, including the well-known multi-layer perceptron (MLP) network, the likelihood network (LNET) and the distance network (DNET), in a unified manner. They then introduce a novel formulation which embeds network parameters into a functional form of the classifier design objective so that the network's parameters can be adjusted by gradient search algorithms, such as the generalized probabilistic descent (GPD) method. They evaluate several discriminative three-layer networks by performing a pattern classification task. They demonstrate that the performance of a network can be significantly improved when discriminative formulations are incorporated into the design of the pattern classification networks.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The authors propose a new family of multi-layer, feed-forward network (FFN) architectures. This framework allows examination of several feed-forward networks, including the well-known multi-layer perceptron (MLP) network, the likelihood network (LNET) and the distance network (DNET), in a unified manner. They then introduce a novel formulation which embeds network parameters into a functional form of the classifier design objective so that the network's parameters can be adjusted by gradient search algorithms, such as the generalized probabilistic descent (GPD) method. They evaluate several discriminative three-layer networks by performing a pattern classification task. They demonstrate that the performance of a network can be significantly improved when discriminative formulations are incorporated into the design of the pattern classification networks.<>
判别多层前馈网络
作者提出了一种新的多层前馈网络(FFN)体系结构。该框架允许以统一的方式检查几个前馈网络,包括众所周知的多层感知器(MLP)网络、似然网络(LNET)和距离网络(DNET)。然后,他们引入了一种新的公式,该公式将网络参数嵌入分类器设计目标的函数形式中,以便网络参数可以通过梯度搜索算法进行调整,例如广义概率下降(GPD)方法。他们通过执行模式分类任务来评估几个判别三层网络。他们证明,当将判别公式纳入模式分类网络的设计中时,网络的性能可以得到显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信