A novel similarity measure technique for clustering using multiple viewpoint based method

Dushyant S. Potdar, T. Pattewar
{"title":"A novel similarity measure technique for clustering using multiple viewpoint based method","authors":"Dushyant S. Potdar, T. Pattewar","doi":"10.1109/ISCO.2016.7727007","DOIUrl":null,"url":null,"abstract":"Data mining is nothing but the process of automatically searching large stores of data to discover patterns and trends that go beyond simple analysis. So it is observed that while doing clustering there may be a chance of occurring dissimilar data object in a cluster. This paper introduces such technology that makes the patterns more accurate, and it helps to search more accurate analysis of data. This System greedily picks the next frequent item set in the next cluster. For this the multiple viewpoints are used to measure the similarity between two different data objects is introduced. We can define similarity between two objects explicitly or implicitly. Cosine similarity measures will resolve this problem. As multiple viewpoints will focuses on similarity measures at multiple levels. These criteria will be used to group the documents based on similarity. The similarity measured between current cluster documents and also other cluster group documents.","PeriodicalId":320699,"journal":{"name":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2016.7727007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data mining is nothing but the process of automatically searching large stores of data to discover patterns and trends that go beyond simple analysis. So it is observed that while doing clustering there may be a chance of occurring dissimilar data object in a cluster. This paper introduces such technology that makes the patterns more accurate, and it helps to search more accurate analysis of data. This System greedily picks the next frequent item set in the next cluster. For this the multiple viewpoints are used to measure the similarity between two different data objects is introduced. We can define similarity between two objects explicitly or implicitly. Cosine similarity measures will resolve this problem. As multiple viewpoints will focuses on similarity measures at multiple levels. These criteria will be used to group the documents based on similarity. The similarity measured between current cluster documents and also other cluster group documents.
一种基于多视点的聚类相似性度量方法
数据挖掘就是自动搜索大量数据以发现超出简单分析的模式和趋势的过程。因此,可以观察到,在进行集群时,集群中可能会出现不同的数据对象。本文介绍了该技术,使模式更加精确,有助于对数据进行更准确的搜索和分析。该系统贪婪地选择下一个集群中的下一个频繁项集。为此,引入了多视点来度量两个不同数据对象之间的相似性。我们可以显式或隐式地定义两个对象之间的相似性。余弦相似度度量将解决这个问题。多视点将侧重于多个层面的相似性度量。这些标准将用于根据相似性对文档进行分组。当前集群文档和其他集群组文档之间测量的相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信