Brain tumor detection & segmentation using deep learning

Ailawadi Daksh, Agarwal Nipun, Agarwal Parth, Rana Manish
{"title":"Brain tumor detection & segmentation using deep learning","authors":"Ailawadi Daksh, Agarwal Nipun, Agarwal Parth, Rana Manish","doi":"10.26634/jcom.10.2.19067","DOIUrl":null,"url":null,"abstract":"The goal of this work is to identify brain tumors and improve care for those who are suffering. Tumors are the term used to denote abnormal cell growth in the brain, while cancer is the term used to describe malignant tumors. Brain cancer regions are typically discovered via Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scans. For the detection of brain tumors, further methods include molecular testing, lumbar puncture, cerebral angiogram, and positron emission tomography. Images from an MRI scan are used in this study to analyze the disease stage. The goals of this research are to segment the tumor region and to identify the abnormal image. The segmented mask can be used to evaluate the tumor's density, which will aid in treatment. ResNet algorithm is used to analyze MRI pictures and find anomalies.","PeriodicalId":130578,"journal":{"name":"i-manager's Journal on Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jcom.10.2.19067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this work is to identify brain tumors and improve care for those who are suffering. Tumors are the term used to denote abnormal cell growth in the brain, while cancer is the term used to describe malignant tumors. Brain cancer regions are typically discovered via Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) scans. For the detection of brain tumors, further methods include molecular testing, lumbar puncture, cerebral angiogram, and positron emission tomography. Images from an MRI scan are used in this study to analyze the disease stage. The goals of this research are to segment the tumor region and to identify the abnormal image. The segmented mask can be used to evaluate the tumor's density, which will aid in treatment. ResNet algorithm is used to analyze MRI pictures and find anomalies.
基于深度学习的脑肿瘤检测与分割
这项工作的目标是识别脑肿瘤并改善对患者的治疗。肿瘤是用来表示大脑中异常细胞生长的术语,而癌症是用来描述恶性肿瘤的术语。脑癌区域通常是通过计算机断层扫描(CT)或磁共振成像(MRI)扫描发现的。对于脑肿瘤的检测,进一步的方法包括分子检测、腰椎穿刺、脑血管造影和正电子发射断层扫描。本研究使用MRI扫描图像来分析疾病分期。本研究的目的是对肿瘤区域进行分割,识别异常图像。分割的掩膜可以用来评估肿瘤的密度,这将有助于治疗。采用ResNet算法对MRI图像进行分析,发现异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信