Osteoarthritis Disease Prediction Based on Random Forest

Ulfah Aprilliani, Zuherman Rustam
{"title":"Osteoarthritis Disease Prediction Based on Random Forest","authors":"Ulfah Aprilliani, Zuherman Rustam","doi":"10.1109/ICACSIS.2018.8618166","DOIUrl":null,"url":null,"abstract":"Abstract–Osteoarthritis is a disease of knee joint, indicated from the biochemical changes and thinning of the knee joint cartilage, which can be seen using T2Map MRI and Density-weighted Protons sequence. these tools detect the thickness changes that occur in the cartilage layes which can identify the presence of osteoarthritis and its severity. However, the immediacy of the result of these tools, whether the patient has osteoarthritis or not, is quite low. This paper presents the classification of osteoarthritis disease into three classes of severity using the random forest method. This model can be used to predict the accuracy of osteoarthritis data by 86,96% in diagnosing the disease. The data of 33 patients with osteoarthritis in Cipto Mangunkusumo National Hospital of Indonesia were used.","PeriodicalId":207227,"journal":{"name":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2018.8618166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract–Osteoarthritis is a disease of knee joint, indicated from the biochemical changes and thinning of the knee joint cartilage, which can be seen using T2Map MRI and Density-weighted Protons sequence. these tools detect the thickness changes that occur in the cartilage layes which can identify the presence of osteoarthritis and its severity. However, the immediacy of the result of these tools, whether the patient has osteoarthritis or not, is quite low. This paper presents the classification of osteoarthritis disease into three classes of severity using the random forest method. This model can be used to predict the accuracy of osteoarthritis data by 86,96% in diagnosing the disease. The data of 33 patients with osteoarthritis in Cipto Mangunkusumo National Hospital of Indonesia were used.
基于随机森林的骨关节炎疾病预测
摘要:骨关节炎是膝关节的一种疾病,通过T2Map MRI和密度加权质子序列可以看到膝关节软骨的生化变化和变薄。这些工具检测发生在软骨层的厚度变化,可以识别骨关节炎的存在及其严重程度。然而,无论患者是否患有骨关节炎,这些工具的结果的即时性都很低。本文采用随机森林方法将骨关节炎疾病的严重程度分为三类。该模型对骨关节炎的诊断准确率可达86.96%。本文采用印度尼西亚Cipto Mangunkusumo国立医院33例骨关节炎患者的资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信