{"title":"On the Application of Convolutional Neural Networks for 12-lead ECG Multi-label Classification Using Datasets From Multiple Centers","authors":"D. Borra, A. Andalò, S. Severi, C. Corsi","doi":"10.22489/CinC.2020.349","DOIUrl":null,"url":null,"abstract":"Cardiac arrhythmia is a group of conditions in which falls changes in the heartbeat. Electrocardiography (ECG) is the most common tool used to identify a pathology in the cardiac electrical conduction system. ECG analysis is usually manually performed by an expert physician. However, manual interpretation is time-consuming and challenging even for cardiologists. Many automatic algorithms relying on handcrafted features and traditional machine learning classifiers were developed to recognize cardiac diseases. However, a large a priori knowledge about ECG signals is exploited. To overcome this main limitation and provide higher performance, recently, deep neural networks were designed and applied for 12-lead ECG classification. In this study, we designed decoding workflows based on three state-of-the-art architectures for time series classification. These were InceptionTime, ResNet and XResNet. Experiments were conducted using the training datasets provided during the PhysioNet/Computing in Cardiology Challenge 2020. The best-performing algorithm was based on InceptionTime, scoring a training 5-fold cross-validation challenge metric of 0.5183±0.0016, while using a low number of parameters (510491 in total). Thus, this algorithm provided the best compromise between performance and complexity.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Cardiac arrhythmia is a group of conditions in which falls changes in the heartbeat. Electrocardiography (ECG) is the most common tool used to identify a pathology in the cardiac electrical conduction system. ECG analysis is usually manually performed by an expert physician. However, manual interpretation is time-consuming and challenging even for cardiologists. Many automatic algorithms relying on handcrafted features and traditional machine learning classifiers were developed to recognize cardiac diseases. However, a large a priori knowledge about ECG signals is exploited. To overcome this main limitation and provide higher performance, recently, deep neural networks were designed and applied for 12-lead ECG classification. In this study, we designed decoding workflows based on three state-of-the-art architectures for time series classification. These were InceptionTime, ResNet and XResNet. Experiments were conducted using the training datasets provided during the PhysioNet/Computing in Cardiology Challenge 2020. The best-performing algorithm was based on InceptionTime, scoring a training 5-fold cross-validation challenge metric of 0.5183±0.0016, while using a low number of parameters (510491 in total). Thus, this algorithm provided the best compromise between performance and complexity.