A new look at filtering techniques for illumination invariance in automatic face recognition

Ognjen Arandjelovic, R. Cipolla
{"title":"A new look at filtering techniques for illumination invariance in automatic face recognition","authors":"Ognjen Arandjelovic, R. Cipolla","doi":"10.1109/FGR.2006.14","DOIUrl":null,"url":null,"abstract":"Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we propose a novel, general recognition framework for efficient matching of individual face images, sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. It is shown how the discrepancy between illumination conditions between novel input and the training data set can be estimated and used to weigh the contribution of two competing representations. We describe an extensive empirical evaluation of the proposed method on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our algorithm consistently demonstrated a dramatic performance improvement over traditional filtering approaches. We demonstrate a reduction of 50-75% in recognition error rates, the best performing method-filter combination correctly recognizing 96% of the individuals","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Illumination invariance remains the most researched, yet the most challenging aspect of automatic face recognition. In this paper we propose a novel, general recognition framework for efficient matching of individual face images, sets or sequences. The framework is based on simple image processing filters that compete with unprocessed greyscale input to yield a single matching score between individuals. It is shown how the discrepancy between illumination conditions between novel input and the training data set can be estimated and used to weigh the contribution of two competing representations. We describe an extensive empirical evaluation of the proposed method on 171 individuals and over 1300 video sequences with extreme illumination, pose and head motion variation. On this challenging data set our algorithm consistently demonstrated a dramatic performance improvement over traditional filtering approaches. We demonstrate a reduction of 50-75% in recognition error rates, the best performing method-filter combination correctly recognizing 96% of the individuals
人脸自动识别中光照不变性滤波技术的新研究
光照不变性是人脸自动识别中研究最多,但也是最具挑战性的一个方面。在本文中,我们提出了一种新的,通用的识别框架,用于有效匹配单个人脸图像,集合或序列。该框架基于简单的图像处理过滤器,这些过滤器与未处理的灰度输入竞争,以产生个体之间的单个匹配分数。它展示了如何估计新输入和训练数据集之间的照明条件之间的差异,并用于权衡两个竞争表示的贡献。我们对171个个体和1300多个具有极端照明、姿势和头部运动变化的视频序列进行了广泛的实证评估。在这个具有挑战性的数据集上,我们的算法始终比传统的过滤方法表现出显著的性能改进。我们证明了识别错误率降低了50-75%,表现最好的方法-滤波器组合正确识别了96%的个体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信