Utilization of multiple block cipher hashing in authentication and digital signatures

K. Rahouma
{"title":"Utilization of multiple block cipher hashing in authentication and digital signatures","authors":"K. Rahouma","doi":"10.1109/ICON.2000.875798","DOIUrl":null,"url":null,"abstract":"A new algorithm for authentication and digital signature is introduced. It is based on using four different hash functions classified as very secure against all attacks except the brute force one. The hash function used is selected by computing nf/sub i/=r/sub i/ mod 4 where r/sub i/ is randomly generated and the initial hash sequence H/sub 0/ is publicized by the sender. According to nf/sub i/, he/she prepares every message block M/sub i/ for encryption by applying a special block cipher technique to obtain the cipher block C/sub i/. Then, the corresponding new hash value H/sub i/ is obtained. The value r/sub i/ is encrypted to R/sub i/ using the sender's secret RSA key d/sub s/ and then the receiver's public one e/sub r/ (this could be reversed if n/sub r/>n/sub s/ where n/sub r/ and n/sub s/ are the modulus numbers of the receiver and sender respectively). The code sent by the sender to the receiver is composed of the combination (C/sub i/, H/sub i/, R/sub i/). This could be useful in checking the integrity of the transmitted message as a whole. The receiver reads the public values H/sub 0/, e/sub s/ and n/sub s/. Then he/she decrypts the cipher C/sub i/ and uses his private RSA key d/sub r/ and the senders public one e/sub s/ to decrypt R/sub i/. Decryption of C/sub i/ yields the prepared block before encryption and decryption of R/sub i/ yields the value r/sub i/. Using r/sub i/, the receiver can compute nf/sub i/=r/sub i/ mod 4. Using nf/sub i/ and H/sub i-1/, he/she can compute the message block M/sub i/' and the hash value H/sub i/'. If H/sub i/'=H/sub i/ then M/sub i/'=M/sub i/ and this means that the message block M/sub i/' was sent by the sender. If this condition is not satisfied, then the message is either changed or sent by another sender. This algorithm is easy to implement and hard to attack.","PeriodicalId":191244,"journal":{"name":"Proceedings IEEE International Conference on Networks 2000 (ICON 2000). Networking Trends and Challenges in the New Millennium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Networks 2000 (ICON 2000). Networking Trends and Challenges in the New Millennium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICON.2000.875798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new algorithm for authentication and digital signature is introduced. It is based on using four different hash functions classified as very secure against all attacks except the brute force one. The hash function used is selected by computing nf/sub i/=r/sub i/ mod 4 where r/sub i/ is randomly generated and the initial hash sequence H/sub 0/ is publicized by the sender. According to nf/sub i/, he/she prepares every message block M/sub i/ for encryption by applying a special block cipher technique to obtain the cipher block C/sub i/. Then, the corresponding new hash value H/sub i/ is obtained. The value r/sub i/ is encrypted to R/sub i/ using the sender's secret RSA key d/sub s/ and then the receiver's public one e/sub r/ (this could be reversed if n/sub r/>n/sub s/ where n/sub r/ and n/sub s/ are the modulus numbers of the receiver and sender respectively). The code sent by the sender to the receiver is composed of the combination (C/sub i/, H/sub i/, R/sub i/). This could be useful in checking the integrity of the transmitted message as a whole. The receiver reads the public values H/sub 0/, e/sub s/ and n/sub s/. Then he/she decrypts the cipher C/sub i/ and uses his private RSA key d/sub r/ and the senders public one e/sub s/ to decrypt R/sub i/. Decryption of C/sub i/ yields the prepared block before encryption and decryption of R/sub i/ yields the value r/sub i/. Using r/sub i/, the receiver can compute nf/sub i/=r/sub i/ mod 4. Using nf/sub i/ and H/sub i-1/, he/she can compute the message block M/sub i/' and the hash value H/sub i/'. If H/sub i/'=H/sub i/ then M/sub i/'=M/sub i/ and this means that the message block M/sub i/' was sent by the sender. If this condition is not satisfied, then the message is either changed or sent by another sender. This algorithm is easy to implement and hard to attack.
多块密码哈希在身份验证和数字签名中的应用
介绍了一种新的认证和数字签名算法。它基于使用四种不同的哈希函数,这些函数被分类为非常安全的,可以抵御除暴力破解之外的所有攻击。使用的哈希函数通过计算nf/sub i/=r/sub i/ mod 4来选择,其中r/sub i/是随机生成的,初始哈希序列H/sub 0/由发送方公布。他/她根据nf/sub i/准备每个消息块M/sub i/进行加密,采用特殊的分组密码技术获得密码块C/sub i/。然后得到相应的新哈希值H/sub i/。值r/sub i/使用发送方的秘密RSA密钥d/sub s/加密为r/sub i/,然后使用接收方的公共密钥e/sub r/(如果n/sub r/>n/sub s/,则可以反转,其中n/sub r/和n/sub s/分别是接收方和发送方的模数)。发送方发送给接收方的代码由(C/sub i/, H/sub i/, R/sub i/)组合组成。这在检查所传输消息的整体完整性时很有用。接收端读取公共值H/sub 0/、e/sub s/和n/sub s/。然后,他/她解密密码C/sub i/,并使用他的RSA私钥d/sub r/和发送方的公钥e/sub s/解密密码r/ sub i/。对C/下标i/进行解密得到加密前准备好的块,对R/下标i/进行解密得到值R/下标i/。使用r/下标i/,接收器可以计算nf/下标i/=r/下标i/ mod 4。使用nf/sub i/和H/sub i-1/,他/她可以计算消息块M/sub i/'和哈希值H/sub i/'。如果H/sub i/'=H/sub i/,则M/sub i/'=M/sub i/,这意味着消息块M/sub i/'是由发送方发送的。如果不满足此条件,则消息要么被更改,要么由另一个发送方发送。该算法实现简单,不易被攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信