A Fast Recursive Method to Compute the Generalized Centroid of an Interval Type-2 Fuzzy Set

M. Melgarejo
{"title":"A Fast Recursive Method to Compute the Generalized Centroid of an Interval Type-2 Fuzzy Set","authors":"M. Melgarejo","doi":"10.1109/NAFIPS.2007.383835","DOIUrl":null,"url":null,"abstract":"This article presents a recursive algorithm to compute the generalized centroid of an interval type-2 fuzzy set. First, a re-expression of the upper and lower limits of the generalized centroid is introduced. Then, the re-expressed formulas are solved by using a mixed approach of exhaustive search and recursive computations. This method is compared with the Karnik-Mendel iterative algorithm under the same computational principles. Experimental evidence shows that the recursive approach is computationally faster than the Karnik-Mendel method without loosing numeric precision.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

This article presents a recursive algorithm to compute the generalized centroid of an interval type-2 fuzzy set. First, a re-expression of the upper and lower limits of the generalized centroid is introduced. Then, the re-expressed formulas are solved by using a mixed approach of exhaustive search and recursive computations. This method is compared with the Karnik-Mendel iterative algorithm under the same computational principles. Experimental evidence shows that the recursive approach is computationally faster than the Karnik-Mendel method without loosing numeric precision.
区间2型模糊集广义质心的快速递归计算方法
本文给出了计算区间2型模糊集广义质心的一种递归算法。首先,引入广义质心上限和下限的重新表达式。然后,采用穷举搜索和递归计算相结合的方法对重新表达的公式进行求解。在相同的计算原理下,将该方法与Karnik-Mendel迭代算法进行了比较。实验结果表明,递归方法在不损失数值精度的情况下,计算速度比卡尔尼克-孟德尔方法快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信