H∞ Admissibility of Singular Stochastic Systems with Markovian Switching and Partly Unknown Transition Rates

Chan-eun Park, P. Park
{"title":"H∞ Admissibility of Singular Stochastic Systems with Markovian Switching and Partly Unknown Transition Rates","authors":"Chan-eun Park, P. Park","doi":"10.1109/ecti-con49241.2020.9158279","DOIUrl":null,"url":null,"abstract":"In this paper, we consider ${\\mathcal{H}_\\infty }$admissibility of singular stochastic systems with Markovian switching (SSMS) with partly unknown transition rates (PUTR). Until now, ${\\mathcal{H}_\\infty }$admissibility condition for SSMS have been studied for the limited cases: 1) SSMS which do not have a path from disturbances to the desired output, 2) the sufficient condition for the general SSMS. On the other hand, the authors successfully obtain the equivalent condition of ${\\mathcal{H}_\\infty }$admissibility criterion for SSMSs by introducing two slack variables. Also, because the proposed condition is expressed in terms of convex condition, i.e., linear matrix inequalities (LMIs), the result can be used to find the optimal ${\\mathcal{H}_\\infty }$performance even though the information about the transition rates is limited.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"2252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider ${\mathcal{H}_\infty }$admissibility of singular stochastic systems with Markovian switching (SSMS) with partly unknown transition rates (PUTR). Until now, ${\mathcal{H}_\infty }$admissibility condition for SSMS have been studied for the limited cases: 1) SSMS which do not have a path from disturbances to the desired output, 2) the sufficient condition for the general SSMS. On the other hand, the authors successfully obtain the equivalent condition of ${\mathcal{H}_\infty }$admissibility criterion for SSMSs by introducing two slack variables. Also, because the proposed condition is expressed in terms of convex condition, i.e., linear matrix inequalities (LMIs), the result can be used to find the optimal ${\mathcal{H}_\infty }$performance even though the information about the transition rates is limited.
具有马尔可夫切换和部分未知转移率的奇异随机系统的H∞可容许性
本文研究了具有部分未知转移率的马尔可夫切换(SSMS)奇异随机系统${\mathcal{H}_\infty }$可容许性问题。目前为止,研究了有限情况下SSMS的${\mathcal{H}_\infty }$可接受条件:1)不具有从干扰到期望输出的路径的SSMS, 2)一般SSMS的充分条件。另一方面,通过引入两个松弛变量,成功地获得了ssss容许准则${\mathcal{H}_\infty }$的等价条件。此外,由于所提出的条件是用凸条件表示的,即线性矩阵不等式(lmi),因此即使有关过渡率的信息有限,结果也可用于找到最优${\mathcal{H}_\infty }$性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信