An Agent-Based Model for Evolution of Cooperation With Proactive Information Gathering

Nahid Mohammad Taheri, J. Polajnar, Liang Chen
{"title":"An Agent-Based Model for Evolution of Cooperation With Proactive Information Gathering","authors":"Nahid Mohammad Taheri, J. Polajnar, Liang Chen","doi":"10.24124/2018/58875","DOIUrl":null,"url":null,"abstract":"This paper explores a new model to investigate the impact of proactive information gathering upon the evolution of cooperation among self-interested agents in a multiagent system. It builds upon an existing game-theoretical model of spatially distributed mobile agent population with the energy-based individual life cycle. Respective agents keep playing one-shot Prisoner’s Dilemma games in neighbourhood encounters. Agents in the new model can dynamically adjust their strategies towards different types of opponents. Simulation experiments are carried out on establishing patterns of how this ability impacts the evolution of cooperation in the presence of varying levels of environmental adversity. The results show that cooperation prevails in a substantially larger area of parameter space than in the basic model without information gathering.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24124/2018/58875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores a new model to investigate the impact of proactive information gathering upon the evolution of cooperation among self-interested agents in a multiagent system. It builds upon an existing game-theoretical model of spatially distributed mobile agent population with the energy-based individual life cycle. Respective agents keep playing one-shot Prisoner’s Dilemma games in neighbourhood encounters. Agents in the new model can dynamically adjust their strategies towards different types of opponents. Simulation experiments are carried out on establishing patterns of how this ability impacts the evolution of cooperation in the presence of varying levels of environmental adversity. The results show that cooperation prevails in a substantially larger area of parameter space than in the basic model without information gathering.
基于agent的主动信息收集合作演化模型
本文探索了一个新的模型来研究多智能体系统中主动信息收集对自利智能体之间合作演化的影响。它建立在现有的基于能量的个体生命周期的空间分布移动智能体种群博弈论模型的基础上。在邻里遭遇中,各自的代理人继续玩一次的囚徒困境游戏。新模型中的智能体可以针对不同类型的对手动态调整策略。我们进行了模拟实验,以建立这种能力在不同程度的环境逆境中如何影响合作进化的模式。结果表明,与不进行信息收集的基本模型相比,在更大的参数空间范围内,合作是普遍存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信