Web structure mining: an introduction

M.G. da Costa, Zhiguo Gong
{"title":"Web structure mining: an introduction","authors":"M.G. da Costa, Zhiguo Gong","doi":"10.1109/ICIA.2005.1635156","DOIUrl":null,"url":null,"abstract":"Due to the increasing amount of data available online, the World Wide Web has becoming one of the most valuable resources for information retrievals and knowledge discoveries. Web mining technologies are the right solutions for knowledge discovery on the Web. The knowledge extracted from the Web can be used to raise the performances for Web information retrievals, question answering, and Web based data warehousing. In this paper, we provide an introduction of Web mining as well as a review of the Web mining categories. Then we focus on one of these categories: the Web structure mining. Within this category, we introduce link mining and review two popular methods applied in Web structure mining: HITS and PageRank.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

Due to the increasing amount of data available online, the World Wide Web has becoming one of the most valuable resources for information retrievals and knowledge discoveries. Web mining technologies are the right solutions for knowledge discovery on the Web. The knowledge extracted from the Web can be used to raise the performances for Web information retrievals, question answering, and Web based data warehousing. In this paper, we provide an introduction of Web mining as well as a review of the Web mining categories. Then we focus on one of these categories: the Web structure mining. Within this category, we introduce link mining and review two popular methods applied in Web structure mining: HITS and PageRank.
Web结构挖掘:介绍
由于在线数据量的增加,万维网已成为信息检索和知识发现的最有价值的资源之一。Web挖掘技术是Web上知识发现的正确解决方案。从Web中提取的知识可用于提高Web信息检索、问题回答和基于Web的数据仓库的性能。在本文中,我们介绍了Web挖掘,并回顾了Web挖掘的类别。然后我们关注其中的一个类别:Web结构挖掘。在这个类别中,我们介绍了链接挖掘,并回顾了在Web结构挖掘中应用的两种流行方法:HITS和PageRank。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信