Robust Resource Allocation

M. Schubert, H. Boche
{"title":"Robust Resource Allocation","authors":"M. Schubert, H. Boche","doi":"10.1109/ITW2.2006.323695","DOIUrl":null,"url":null,"abstract":"We propose a framework for robust power allocation based on worst-case interference functions, which are determined by a parameter-dependent coupling matrix. The power allocation is optimized with respect to the worst-case interference. One main contribution of this paper is to show that these worst-case interference functions have useful properties, which can be exploited for the design of an efficient iterative algorithm. The proposed iteration minimizes the total transmit power while the worst-case SINR of each user achieves a given target value. By analyzing the properties of the interference functions, we show monotonicity and super-linear global convergence, even though the original problem is non-convex. The iteration always requires less steps than an alternative fixed-point iteration, which has only linear convergence.","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a framework for robust power allocation based on worst-case interference functions, which are determined by a parameter-dependent coupling matrix. The power allocation is optimized with respect to the worst-case interference. One main contribution of this paper is to show that these worst-case interference functions have useful properties, which can be exploited for the design of an efficient iterative algorithm. The proposed iteration minimizes the total transmit power while the worst-case SINR of each user achieves a given target value. By analyzing the properties of the interference functions, we show monotonicity and super-linear global convergence, even though the original problem is non-convex. The iteration always requires less steps than an alternative fixed-point iteration, which has only linear convergence.
稳健的资源分配
提出了一种基于最坏情况干扰函数的鲁棒功率分配框架,最坏情况干扰函数由参数相关耦合矩阵确定。针对最坏干扰情况对功率分配进行了优化。本文的一个主要贡献是表明这些最坏情况干扰函数具有有用的性质,可以用于设计有效的迭代算法。所提出的迭代使总发射功率最小化,同时使每个用户的最坏信噪比达到给定的目标值。通过分析干涉函数的性质,证明了在原问题非凸的情况下,干涉函数具有单调性和超线性全局收敛性。迭代总是比另一种只有线性收敛的定点迭代需要更少的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信