{"title":"Line harmonic current effects study of a 33 kW, 3-Phase 60 Hz, 12-pulse transformer using \"Double-2D\" FEA model","authors":"G. Kamath","doi":"10.1109/PEDES.2014.7042084","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of the skin and proximity effects produced by line frequency harmonic currents in a 33 kW 12-pulse rectifier transformer using its \"Double-2D\" FEA model. The model is first validated with experimental data obtained from a series of standard impedance voltage tests with a proof-of-concept transformer prototype. Good agreement is observed between model results and experimental data. The model is then used to study the 12-pulse harmonic current conditions and represent the associated winding losses as equivalent resistances. It is seen that harmonic current losses account for as much as 8-11% of the secondary winding and 4-6% of the total winding power loss, indicating their significance in this application.","PeriodicalId":124701,"journal":{"name":"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES.2014.7042084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents an analysis of the skin and proximity effects produced by line frequency harmonic currents in a 33 kW 12-pulse rectifier transformer using its "Double-2D" FEA model. The model is first validated with experimental data obtained from a series of standard impedance voltage tests with a proof-of-concept transformer prototype. Good agreement is observed between model results and experimental data. The model is then used to study the 12-pulse harmonic current conditions and represent the associated winding losses as equivalent resistances. It is seen that harmonic current losses account for as much as 8-11% of the secondary winding and 4-6% of the total winding power loss, indicating their significance in this application.