{"title":"High Throughput Core-CBCM CMOS Capacitive Sensor for Life Science Applications","authors":"Saghi Forouhi, R. Dehghani, E. Ghafar-Zadeh","doi":"10.1109/CCECE.2018.8447694","DOIUrl":null,"url":null,"abstract":"This paper presents a throughput capacitive biosensor using charge based capacitive measurement (CBCM) technique suitable for lab-on-chip (LOC) applications. The proposed biosensor consists of a 10×10 array of core-CBCM capacitive sensors with digital outputs working in current mode. Each capacitive sensor consists of a differential current mirror, a current-controlled oscillator and an up/down counter using linear feedback shift register (LFSR). By the conversion of the current response of the core-CBCM circuit to pulse frequencies and counting the number of the output pulses during a specific time interval, we can do the required integration in the digital domain instead of the analog domain and thus prevent operation in voltage mode. This approach helps to obtain a wide dynamic range more than 100fF (about 80 dB) with a controllable sensitivity about 118 pulse/fF. Based on the simulated results, the proposed sensor offers great advantages for high throughput drug screening applications.","PeriodicalId":181463,"journal":{"name":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2018.8447694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a throughput capacitive biosensor using charge based capacitive measurement (CBCM) technique suitable for lab-on-chip (LOC) applications. The proposed biosensor consists of a 10×10 array of core-CBCM capacitive sensors with digital outputs working in current mode. Each capacitive sensor consists of a differential current mirror, a current-controlled oscillator and an up/down counter using linear feedback shift register (LFSR). By the conversion of the current response of the core-CBCM circuit to pulse frequencies and counting the number of the output pulses during a specific time interval, we can do the required integration in the digital domain instead of the analog domain and thus prevent operation in voltage mode. This approach helps to obtain a wide dynamic range more than 100fF (about 80 dB) with a controllable sensitivity about 118 pulse/fF. Based on the simulated results, the proposed sensor offers great advantages for high throughput drug screening applications.