{"title":"Recursive Interval-Halving Method for Generating Model Independent Impedance Tuner Characterizations","authors":"Austin Egbert, C. Baylis, A. Martone, R. Marks","doi":"10.1109/WMCS52222.2021.9493222","DOIUrl":null,"url":null,"abstract":"Existing impedance tuners are often able to utilize characterization processes that model the underlying behavior of the tuner's fundamental parameters to efficiently select a range of parameter settings that evenly span the device's potential impedance characteristics. However, new tuner implementations cannot take advantage of these processes without preestablished knowledge of their underlying behavior, and this behavior can be difficult to efficiently and reliably model. In such circumstances, a modelless characterization process is required to determine the device settings needed to span its possible impedance values efficiently and evenly. Here, a process using a recursive interval-halving approach is demonstrated for characterizing impedance tuners without the use of a model.","PeriodicalId":401066,"journal":{"name":"2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)","volume":"130 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMCS52222.2021.9493222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Existing impedance tuners are often able to utilize characterization processes that model the underlying behavior of the tuner's fundamental parameters to efficiently select a range of parameter settings that evenly span the device's potential impedance characteristics. However, new tuner implementations cannot take advantage of these processes without preestablished knowledge of their underlying behavior, and this behavior can be difficult to efficiently and reliably model. In such circumstances, a modelless characterization process is required to determine the device settings needed to span its possible impedance values efficiently and evenly. Here, a process using a recursive interval-halving approach is demonstrated for characterizing impedance tuners without the use of a model.