Epileptic Seizure Detection Using Deep Convolutional Network

Lang Zou, Xiaofeng Liu, A. Jiang, Xu Zhou
{"title":"Epileptic Seizure Detection Using Deep Convolutional Network","authors":"Lang Zou, Xiaofeng Liu, A. Jiang, Xu Zhou","doi":"10.1109/ICDSP.2018.8631789","DOIUrl":null,"url":null,"abstract":"In this paper, a patient specific seizure detection system using channel-restricted convolutional neural network(CR-CNN) with deep structure is represented. The binary patterns of brainwave activity reflected on ictal and interictal EEG are auto-memorized based on back-propagation mechanism. It is well trained using massive historical scalp EEG data of 23 pediatric patients with epilepsy from CHB-MIT database. Experimental results demonstrate that the proposed detector achieves the state of the art performance. The average false alarms rate reaches 0.12 per hour and only one out of the 167 seizures is missed.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a patient specific seizure detection system using channel-restricted convolutional neural network(CR-CNN) with deep structure is represented. The binary patterns of brainwave activity reflected on ictal and interictal EEG are auto-memorized based on back-propagation mechanism. It is well trained using massive historical scalp EEG data of 23 pediatric patients with epilepsy from CHB-MIT database. Experimental results demonstrate that the proposed detector achieves the state of the art performance. The average false alarms rate reaches 0.12 per hour and only one out of the 167 seizures is missed.
基于深度卷积网络的癫痫发作检测
本文提出了一种基于深度结构的通道限制卷积神经网络(CR-CNN)的患者特异性癫痫检测系统。基于反向传播机制,自动记忆脑电中反映的脑波活动的二元模式。使用CHB-MIT数据库中23例儿童癫痫患者的大量历史头皮脑电图数据进行训练。实验结果表明,所提出的检测器达到了最先进的性能。平均误报率达到每小时0.12次,167次癫痫发作中只有一次被遗漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信