Software Defect Prediction Using Call Graph Based Ranking (CGBR) Framework

Burak Turhan, Gözde Koçak, A. Bener
{"title":"Software Defect Prediction Using Call Graph Based Ranking (CGBR) Framework","authors":"Burak Turhan, Gözde Koçak, A. Bener","doi":"10.1109/SEAA.2008.52","DOIUrl":null,"url":null,"abstract":"Recent research on static code attribute (SCA) based defect prediction suggests that a performance ceiling has been achieved and this barrier can be exceeded by increasing the information content in data. In this research we propose static call graph based ranking (CGBR) framework, which can be applied to any defect prediction model based on SCA. In this framework, we model both intra module properties and inter module relations. Our results show that defect predictors using CGBR framework can detect the same number of defective modules, while yielding significantly lower false alarm rates. On industrial public data, we also show that using CGBR framework can improve testing efforts by 23%.","PeriodicalId":127633,"journal":{"name":"2008 34th Euromicro Conference Software Engineering and Advanced Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 34th Euromicro Conference Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2008.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Recent research on static code attribute (SCA) based defect prediction suggests that a performance ceiling has been achieved and this barrier can be exceeded by increasing the information content in data. In this research we propose static call graph based ranking (CGBR) framework, which can be applied to any defect prediction model based on SCA. In this framework, we model both intra module properties and inter module relations. Our results show that defect predictors using CGBR framework can detect the same number of defective modules, while yielding significantly lower false alarm rates. On industrial public data, we also show that using CGBR framework can improve testing efforts by 23%.
基于调用图排序框架的软件缺陷预测
最近对基于静态代码属性(SCA)的缺陷预测的研究表明,已经达到了性能上限,并且可以通过增加数据中的信息内容来超越这个障碍。本文提出了基于静态调用图的排序框架(CGBR),该框架可应用于任何基于SCA的缺陷预测模型。在这个框架中,我们对模块内属性和模块间关系建模。我们的结果表明,使用CGBR框架的缺陷预测器可以检测到相同数量的缺陷模块,同时产生显着降低的误报率。在工业公共数据上,我们也表明使用CGBR框架可以将测试工作提高23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信