Privacy Impact Assessment Template for Provenance

Jenni Reuben, L. Martucci, S. Fischer-Hübner, Heather S. Packer, Hans Hedbom, L. Moreau
{"title":"Privacy Impact Assessment Template for Provenance","authors":"Jenni Reuben, L. Martucci, S. Fischer-Hübner, Heather S. Packer, Hans Hedbom, L. Moreau","doi":"10.1109/ARES.2016.95","DOIUrl":null,"url":null,"abstract":"Provenance data can be expressed as a graph with links informing who and which activities created, used and modified entities. The semantics of these links and domain specific reasoning can support the inference of additional information about the elements in the graph. If such elements include personal identifiers and/or personal identifiable information, then inferences may reveal unexpected links between elements, thus exposing personal data beyond an individual's intentions. Provenance graphs often entangle data relating to multiple individuals. It is therefore a challenge to protect personal data from unintended disclosure in provenance graphs. In this paper, we provide a Privacy Impact Assessment (PIA) template for identifying imminent privacy threats that arise from provenance graphs in an application-agnostic setting. The PIA template identifies privacy threats, lists potential countermeasures, helps to manage personal data protection risks, and maintains compliance with privacy data protection laws and regulations.","PeriodicalId":216417,"journal":{"name":"2016 11th International Conference on Availability, Reliability and Security (ARES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Availability, Reliability and Security (ARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2016.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Provenance data can be expressed as a graph with links informing who and which activities created, used and modified entities. The semantics of these links and domain specific reasoning can support the inference of additional information about the elements in the graph. If such elements include personal identifiers and/or personal identifiable information, then inferences may reveal unexpected links between elements, thus exposing personal data beyond an individual's intentions. Provenance graphs often entangle data relating to multiple individuals. It is therefore a challenge to protect personal data from unintended disclosure in provenance graphs. In this paper, we provide a Privacy Impact Assessment (PIA) template for identifying imminent privacy threats that arise from provenance graphs in an application-agnostic setting. The PIA template identifies privacy threats, lists potential countermeasures, helps to manage personal data protection risks, and maintains compliance with privacy data protection laws and regulations.
来源隐私影响评估模板
来源数据可以表示为带有链接的图,这些链接告知谁以及哪些活动创建、使用和修改了实体。这些链接的语义和领域特定推理可以支持对图中元素的附加信息的推断。如果这些元素包括个人标识符和/或个人可识别信息,那么推断可能会揭示元素之间意想不到的联系,从而暴露超出个人意图的个人数据。来源图通常会将与多个个体相关的数据纠缠在一起。因此,保护个人数据不受来源图中意外披露是一项挑战。在本文中,我们提供了一个隐私影响评估(PIA)模板,用于识别在与应用程序无关的设置中由来源图产生的迫在眉睫的隐私威胁。PIA模板识别隐私威胁,列出可能的应对措施,帮助管理个人数据保护风险,并保持对隐私数据保护法律法规的遵从。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信