Improved generalization learning with sliding mode control and the Levenberg-Marquadt algorithm

M. Costa, A. Braga, B. R. Menezes
{"title":"Improved generalization learning with sliding mode control and the Levenberg-Marquadt algorithm","authors":"M. Costa, A. Braga, B. R. Menezes","doi":"10.1109/SBRN.2002.1181433","DOIUrl":null,"url":null,"abstract":"A variation of the well known Levenberg-Marquardt for training neural networks is presented in this work. The algorithm presented restricts the norm of the weights vector to a preestablished norm value and finds the minimum error solution for that norm value. A range of different norm solutions is generated and the best generalization solution is selected. The results show the efficiency of the algorithm in terms of convergence speed and generalization performance.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A variation of the well known Levenberg-Marquardt for training neural networks is presented in this work. The algorithm presented restricts the norm of the weights vector to a preestablished norm value and finds the minimum error solution for that norm value. A range of different norm solutions is generated and the best generalization solution is selected. The results show the efficiency of the algorithm in terms of convergence speed and generalization performance.
利用滑模控制和Levenberg-Marquadt算法改进泛化学习
在这项工作中提出了著名的Levenberg-Marquardt训练神经网络的一种变体。该算法将权重向量的范数限制在一个预先确定的范数上,并求出该范数的最小误差解。生成一系列不同的范数解,并选择最佳泛化解。结果表明,该算法在收敛速度和泛化性能方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信