A Deep Learning Approach for Extracting Attributes of ABAC Policies

Manar Alohaly, Hassan Takabi, Eduardo Blanco
{"title":"A Deep Learning Approach for Extracting Attributes of ABAC Policies","authors":"Manar Alohaly, Hassan Takabi, Eduardo Blanco","doi":"10.1145/3205977.3205984","DOIUrl":null,"url":null,"abstract":"The National Institute of Standards and Technology (NIST) has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy (NLACP) to a machine-readable form. An essential step towards this automation is to automate the extraction of ABAC attributes from NLACPs, which is the focus of this paper. We, therefore, raise the question of: how can we automate the task of attributes extraction from natural language documents? Our proposed solution to this question is built upon the recent advancements in natural language processing and machine learning techniques. For such a solution, the lack of appropriate data often poses a bottleneck. Therefore, we decouple the primary contributions of this work into: (1) developing a practical framework to extract ABAC attributes from natural language artifacts, and (2) generating a set of realistic synthetic natural language access control policies (NLACPs) to evaluate the proposed framework. The experimental results are promising with regard to the potential automation of the task of interest. Using a convolutional neural network (CNN), we achieved - in average - an F1-score of 0.96 when extracting the attributes of subjects, and 0.91 when extracting the objects' attributes from natural language access control policies.","PeriodicalId":423087,"journal":{"name":"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205977.3205984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The National Institute of Standards and Technology (NIST) has identified natural language policies as the preferred expression of policy and implicitly called for an automated translation of ABAC natural language access control policy (NLACP) to a machine-readable form. An essential step towards this automation is to automate the extraction of ABAC attributes from NLACPs, which is the focus of this paper. We, therefore, raise the question of: how can we automate the task of attributes extraction from natural language documents? Our proposed solution to this question is built upon the recent advancements in natural language processing and machine learning techniques. For such a solution, the lack of appropriate data often poses a bottleneck. Therefore, we decouple the primary contributions of this work into: (1) developing a practical framework to extract ABAC attributes from natural language artifacts, and (2) generating a set of realistic synthetic natural language access control policies (NLACPs) to evaluate the proposed framework. The experimental results are promising with regard to the potential automation of the task of interest. Using a convolutional neural network (CNN), we achieved - in average - an F1-score of 0.96 when extracting the attributes of subjects, and 0.91 when extracting the objects' attributes from natural language access control policies.
ABAC策略属性提取的深度学习方法
美国国家标准与技术研究所(NIST)已经将自然语言策略确定为策略的首选表达,并隐式地要求将ABAC自然语言访问控制策略(NLACP)自动翻译为机器可读的形式。实现这种自动化的一个重要步骤是从nlacp中自动提取ABAC属性,这是本文的重点。因此,我们提出了一个问题:我们如何从自然语言文档中自动提取属性?我们对这个问题提出的解决方案是建立在自然语言处理和机器学习技术的最新进展之上的。对于这种解决方案,缺乏适当的数据通常会造成瓶颈。因此,我们将这项工作的主要贡献解耦为:(1)开发一个实用的框架来从自然语言工件中提取ABAC属性,以及(2)生成一组现实的综合自然语言访问控制策略(nlacp)来评估所提出的框架。实验结果对潜在的自动化感兴趣的任务很有希望。使用卷积神经网络(CNN),我们在提取主题属性时平均获得了0.96分的f1分,在从自然语言访问控制策略中提取对象属性时平均获得了0.91分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信