A linear bound on the complexity of the delaunay triangulation of points on polyhedral surfaces

D. Attali, J. Boissonnat
{"title":"A linear bound on the complexity of the delaunay triangulation of points on polyhedral surfaces","authors":"D. Attali, J. Boissonnat","doi":"10.1145/566282.566304","DOIUrl":null,"url":null,"abstract":"Delaunay triangulations and Voronoi diagrams have found numerous applications in surface modeling, surface mesh generation, deformable surface modeling and surface reconstruction. Many algorithms in these applications begin by constructing the three-dimensional Delaunay triangulation of a finite set of points scattered over a surface. Their running-time therefore depends on the complexity of the Delaunay triangulation of such point sets. Although the complexity of the Delaunay triangulation of points may be quadratic in the worst-case, we show in this paper that it is only linear when the points are distributed on a fixed number of well-sampled facets (e.g. the facets of a polyhedron). Our bound is deterministic and the constants are explicitly given.","PeriodicalId":286112,"journal":{"name":"International Conference on Smart Media and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/566282.566304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Delaunay triangulations and Voronoi diagrams have found numerous applications in surface modeling, surface mesh generation, deformable surface modeling and surface reconstruction. Many algorithms in these applications begin by constructing the three-dimensional Delaunay triangulation of a finite set of points scattered over a surface. Their running-time therefore depends on the complexity of the Delaunay triangulation of such point sets. Although the complexity of the Delaunay triangulation of points may be quadratic in the worst-case, we show in this paper that it is only linear when the points are distributed on a fixed number of well-sampled facets (e.g. the facets of a polyhedron). Our bound is deterministic and the constants are explicitly given.
多面体表面上点的delaunay三角剖分复杂度的线性界
Delaunay三角剖分和Voronoi图已经在表面建模、表面网格生成、可变形表面建模和表面重建中找到了许多应用。在这些应用中,许多算法都是从对分散在表面上的有限点集构建三维德劳内三角剖分开始的。因此,它们的运行时间取决于这些点集的Delaunay三角剖分的复杂性。虽然点的Delaunay三角剖分的复杂性在最坏情况下可能是二次的,但我们在本文中表明,只有当点分布在固定数量的采样良好的面(例如多面体的面)上时,它才是线性的。我们的界是确定的,常数是显式给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信